Math 54: Worksheet \#17

Name: \qquad Date: October 28, 2021
Fall 2021
Problem 1 (True/False). If $\underline{y}=\underline{z}_{1}+\underline{z}_{2}$ where \underline{z}_{1} is in W and \underline{z}_{2} is in W^{\perp}, then \underline{z}_{1} must be the orthogonal projection of \underline{y} onto W.

Problem 2 (True/False). If an $n \times p$ matrix U has orthonormal columns, then $U U^{T} \underline{x}=\underline{x}$ for all \underline{x} in \mathbb{R}^{n}.

Problem 3 (True/False). If \mathcal{B} is an eigenbasis of \mathbb{R}^{n} for an $n \times n$ matrix A, then Gram-Schmidt of \mathcal{B} gives an orthonormal eigenbasis of A.

Problem 4 (True/False). If $W=\operatorname{span}\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right\}$ with $\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right\}$ linearly independent, and if $\left\{\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}\right\}$ is an orthogonal set in W, then $\left\{\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}\right\}$ is a basis for W.

Problem 5 ($6.3 \# 10$). Consider the following vectors:

$$
\underline{y}=\left[\begin{array}{l}
3 \\
4 \\
5 \\
6
\end{array}\right], \quad \underline{u}_{1}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right], \quad \underline{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \quad \underline{u}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1
\end{array}\right] .
$$

Let W be the subspace spanned by the \underline{u} 's, and write \underline{y} as a sum of a vector in W and a vector orthogonal to W.

Problem 6 ($6.3 \# 12$). Consider the following vectors:

$$
\underline{y}=\left[\begin{array}{c}
3 \\
-1 \\
1 \\
13
\end{array}\right], \quad \underline{v}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
-1 \\
2
\end{array}\right], \quad \underline{v}_{2}=\left[\begin{array}{c}
-4 \\
1 \\
0 \\
3
\end{array}\right]
$$

Find the closest point to \underline{y} in the subspace W spanned by \underline{v}_{1} and \underline{v}_{2}. Also, find the distance \underline{y} to W.

Problem 7 (6.4 \#10). Consider the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 6 & 6 \\
3 & -8 & 3 \\
1 & -2 & 6 \\
1 & -4 & -3
\end{array}\right]
$$

Find an orthonormal basis of the $\operatorname{Col} A$. Explain how you would use this to factor $A=Q R$.

