Math 54: Worksheet #17

 Name:
 Date:
 October 28, 2021

 Fall 2021

Problem 1 (True/False). If $\underline{y} = \underline{z}_1 + \underline{z}_2$ where \underline{z}_1 is in W and \underline{z}_2 is in W^{\perp} , then \underline{z}_1 must be the orthogonal projection of \underline{y} onto W.

Problem 2 (True/False). If an $n \times p$ matrix U has orthonormal columns, then $UU^T \underline{x} = \underline{x}$ for all \underline{x} in \mathbb{R}^n .

Problem 3 (True/False). If \mathcal{B} is an eigenbasis of \mathbb{R}^n for an $n \times n$ matrix A, then Gram-Schmidt of \mathcal{B} gives an orthonormal eigenbasis of A.

Problem 4 (True/False). If $W = \operatorname{span}\{\underline{x}_1, \underline{x}_2, \underline{x}_3\}$ with $\{\underline{x}_1, \underline{x}_2, \underline{x}_3\}$ linearly independent, and if $\{\underline{v}_1, \underline{v}_2, \underline{v}_3\}$ is an orthogonal set in W, then $\{\underline{v}_1, \underline{v}_2, \underline{v}_3\}$ is a basis for W.

Problem 5 (6.3 #10). Consider the following vectors:

$$\underline{y} = \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix}, \quad \underline{u}_1 = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \quad \underline{u}_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \quad \underline{u}_3 = \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}.$$

Let W be the subspace spanned by the \underline{u} 's, and write \underline{y} as a sum of a vector in W and a vector orthogonal to W.

Problem 6 (6.3 #12). Consider the following vectors:

$$\underline{y} = \begin{bmatrix} 3\\ -1\\ 1\\ 1\\ 13 \end{bmatrix}, \quad \underline{v}_1 = \begin{bmatrix} 1\\ -2\\ -1\\ 2 \end{bmatrix}, \quad \underline{v}_2 = \begin{bmatrix} -4\\ 1\\ 0\\ 3 \end{bmatrix}.$$

Find the closest point to \underline{y} in the subspace W spanned by \underline{v}_1 and \underline{v}_2 . Also, find the distance \underline{y} to W.

Problem 7 (6.4 #10). Consider the matrix

$$A = \begin{bmatrix} -1 & 6 & 6\\ 3 & -8 & 3\\ 1 & -2 & 6\\ 1 & -4 & -3 \end{bmatrix}.$$

Find an orthonormal basis of the Col A. Explain how you would use this to factor A = QR.