
Math 54: Worksheet #18, Solutions

Name: Date: November 4, 2021

Fall 2021

Problem 1 (True/False). If b is in the column space of A, then every solution of Ax = b is a least-squares
solution.

Solution. True. If b is in the column space of A, then Ax = b is consistent. Every solution x̂ of Ax = b then
has ‖Ax̂− b‖ = 0, which clearly minimizes ‖Ax− b‖. Thus, it is a least-squares solution.

Another way to see this is that if b is the column space of A, then b = projColA b, so any solution of
Ax = b satisfies Ax = projColA b, meaning that it is a least-squares solution.

Problem 2 (True/False). The least-squares solution of Ax = b is the point in the column space of A closest
to b.

Solution. False. The least-squares solution of Ax = b is a point x̂ such that Ax̂ = projColA b, the point in
the column space of A closest to b. So the least-squares solution is simply a vector of weights for the linear
combination of the columns of A that makes projColA b.

Problem 3 (True/False). The function 〈f, g〉 = f(0)2 + f(1)2 + g(0)2 + g(1)2 is an inner product on the
vector space V = P2, the space of polynomials of degree at most 2.

Solution. False. This function is not bilinear. Consider f(x) = 1 and g(x) = 0. Then,

〈f, g〉 = 12 + 12 + 02 + 02 = 2,

〈2f, g〉 = 22 + 22 + 02 + 02 = 8 6= 2〈f, g〉.

Problem 4 (True/False). The function 〈f, g〉 = f(−2)g(−2) + f(0)g(0) + f(2)g(2) is an inner product on
the vector space V = P2, the space of polynomials of degree at most 2.

Solution. True. This function is clearly bilinear. Indeed, 〈f, g〉 = 〈g, f〉 since multiplication commutes. Also,

〈f + h, g〉 = (f(−2) + h(−2))g(−2) + (f(0) + h(0))g(0) + (f(2) + h(2))g(2)

= (f(−2)g(−2) + f(0)g(0) + f(2)g(2)) + (h(−2)g(−2) + h(0)g(0) + h(2)g(2)) = 〈f, g〉+ 〈h, g〉,
〈cf, g〉 = (cf(−2))g(−2) + (cf(0))g(0) + (cf(2))g(2) = c(f(−2)g(−2) + f(0)g(0) + f(2)g(2)) = c〈f, g〉.

Finally, we have that

〈f, f〉 = f(−2)2 + f(0)2 + f(2)2 ≥ 0.

Also, 〈f, f〉 = 0 if and only if f(−2) = f(0) = f(2) = 0. This means that f has at least 3 distinct roots. Since
f is a polynomial of degree at most 2, this means that f must be the zero polynomial, f = 0.
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Problem 5 (6.5 #10). Consider the following matrix A and vector b:

A =

 1 2
−1 4
1 2

 , b =

 3
−1
5

 .
(a) Find the orthogonal projection of b onto ColA.

(b) Find a least squares solution of Ax = b.

Solution. (a) To find the orthogonal projection of b onto ColA, we first want an orthogonal basis of ColA.
A quick check verifies that the columns of A are orthogonal, so they themselves form this orthogonal
basis. Then, we can find the orthogonal projection:

projColA b =
b · a1
a1 · a1

a1 +
b · a2
a2 · a2

a2 =
3 + 1 + 5

1 + 1 + 1
a1 +

6− 4 + 10

4 + 16 + 4
a2 = 3a1 +

1

2
a2 = 3

 1
−1
1

+
1

2

2
4
2

 =

 4
−1
4

 .
(b) Finding a least squares solution of Ax = b amounts to solving Ax̂ = projColA b. From above, we see

that projColA b = 3a1 + 1
2a2, which means that x̂ =

[
3

1/2

]
is a solution to Ax̂ = projColA b.

Problem 6 (6.6 #4). Find the line of best fit, y = β0 + β1x, which minimizes the square of the difference in
y-values for the following data points:

(2, 3), (3, 2), (5, 1) (6, 0).

Solution. We want to find a least-squares solution fo Aβ = b, where

A =


1 2
1 3
1 5
1 6

 , β =

[
β0
β1

]
, b =


3
2
1
0

 .
We solve using the normal equations ATAβ = AT b:

ATA =

[
1 1 1 1
2 3 5 6

]
1 2
1 3
1 5
1 6

 =

[
4 16
16 74

]
,

AT b =

[
1 1 1 1
2 3 5 6

]
3
2
1
0

 =

[
6
17

]
,

[
4 16 6
16 74 17

]
−→

[
4 16 6
0 10 −7

]
−→

[
2 8 3
0 10 −7

]
.

Solving for β0, β1, we get:

β1 = −7/10 = −0.7,

2β0 = 3− 8β1 = 3 + 5.6 = 8.6⇒ β0 = 4.3.

Thus, we get the line y = 4.3− 0.7x.
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Problem 7 (6.7 #9). Let P3 have the inner product given by evaluation at −3, −1, 1, and 3: 〈f, g〉 =
f(−3)g(−3) + f(−1)g(−1) + f(1)g(1) + f(3)g(3). Let p0(t) = 1, p1(t) = t, and p2(t) = t2.

(a) Compute the orthogonal projection of p2 onto the subspace spanned by p0 and p1.

(b) Find a polynomial q that is orthogonal to p0 and p1 such that {p0, p1, q} is orthogonal basis for
span{p0, p1, p2} = P2. Scale the polynomial q so that its vector of values at (−3,−1, 1, 3) is (1,−1,−1, 1).

Solution. First, we notice that the inner product only depends on the values of the polynomials at the points
−3, −1, 1, and 3. Thus, we list each polynomial as a vector in R4 that contains the value of the polynomial
at those four points:

[p0]B =


1
1
1
1

 , [p1]B =


−3
−1
1
3

 , [p2]B =


9
1
1
9

 .
Then, the inner product between any two polynomials f and g is given by the usual dot product between
these coordinate vectors.

Note: This isn’t a required step, but it puts this inner product in context of the usual dot product that
we see, so some students find it easier for calculation. As suggested by my notation above, these are in fact
coordinate vectors, with respect to a special basis B. The basis is formed by Lagrange polynomials, which
you don’t need to understand the details of. However, it is important to understand that every polynomial in
P3 is completely determined by its value at any four points (such as −3, −1, 1, and 3), so these coordinate
vectors correspond to exactly one polynomial, as expected. This forms an isomorphism between P3 and R4.

(a) Let W be the subspace spanned by p0 and p1. We notice that 〈p0, p1〉 = (1)(−3) + (1)(−1) + (1)(1) +
(1)(3) = 0, so p0 and p1 are orthogonal and form a basis of W . This means that we can use our
orthogonal projection formula:

projW p2 =
〈p2, p0〉
〈p0, p0〉

p0 +
〈p2, p1〉
〈p1, p1〉

p1

=
(9)(1) + (1)(1) + (1)(1) + (9)(1)

12 + 12 + 12 + 12
p0 +

(9)(−3) + (1)(−1) + (1)(1) + (9)(3)

(−3)2 + (−1)2 + 12 + 32
p1

=
20

4
p0 +

0

20
p1 = 5p0 = 5.

(b) To find an orthogonal basis {p0, p1, q} for P2 = span{p0, p1, p2}, we want to apply Gram-Schmidt
to {p0, p1, p2}. We already saw that p0 and p1 are orthogonal, so the first two vectors will remain
unchanged. Then, for the third vector, we get that

q = p2 −
〈p2, p0〉
〈p0, p0〉

p0 −
〈p2, p1〉
〈p1, p1〉

p1 = p2 − projW p2 = t2 − 5.

We see that q(1) = 12 − 5 = −4, so we want to scale q by a factor of 1/4. This gives us q(t) = 1
4 (t2 − 5).

Then, the corresponding coordinate vector is:

[q]B =


1
−1
−1
1

 .
We can easily check that q is indeed orthogonal to p0 and p1, as desired.
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