Math 54: Worksheet \#19

Name: \qquad Date: November 9, 2021

Fall 2021

Problem 1 (True/False). All real symmetric matrices are diagonalizable over \mathbb{R}.

Problem 2 (True/False). Eigenspaces of a real symmetric matrix are mutually orthogonal.

Problem 3 (True/False). A quadratic form Q on \mathbb{R}^{n} corresponds to a unique real symmetric matrix A by $Q(\underline{x})=\underline{x}^{T} A \underline{x}$.

Problem 4 (True/False). The eigenvalues of $A^{T} A$ and $A A^{T}$ are real and non-negative.

Problem 5 (True/False). If A is square $(n \times n)$ and invertible with SVD $A=U \Sigma V^{T}$, then $A^{-1}=V \Sigma U^{T}$.

Problem 6 (True/False). If A is $n \times n$ and symmetric, then the singular values of A coincide with the eigenvalues of A.

Problem 7 (7.1 \#18). Consider the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & -6 & 4 \\
-6 & 2 & -2 \\
4 & -2 & -3
\end{array}\right]
$$

The eigenvalues are $-3,-6,9$. Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D.

Problem $8(7.2 \# 8)$. Let A be the matrix of the quadratic form

$$
9 x_{1}^{2}+7 x_{2}^{2}+11 x_{3}^{2}-8 x_{1} x_{2}+8 x_{1} x_{3} .
$$

It can be shown that the eigenvalues of A are 3,9 , and 15 . Find an orthogonal matrix P such that the change of variable $\underline{x}=P \underline{y}$ transforms $\underline{x}^{T} A \underline{x}$ into a quadratic form with no cross-product term. Give P and the new quadratic form.

Problem 9 ($7.2 \# 20$). What is the largest value of the quadratic form $5 x_{1}^{2}-3 x_{2}^{2}$ if $\underline{x}^{T} \underline{x}=1$?

Problem 10 (7.3 \#10). Find an SVD of the following matrix:

$$
A=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]
$$

