Math 54: Worksheet #19

Name: _	 Date: November 9, 2021
	Fall 2021

Problem 1 (True/False). All real symmetric matrices are diagonalizable over \mathbb{R} .

Problem 2 (True/False). Eigenspaces of a real symmetric matrix are mutually orthogonal.

Problem 3 (True/False). A quadratic form Q on \mathbb{R}^n corresponds to a unique real symmetric matrix A by $Q(\underline{x}) = \underline{x}^T A \underline{x}$.

Problem 4 (True/False). The eigenvalues of $A^T A$ and $A A^T$ are real and non-negative.

Problem 5 (True/False). If A is square $(n \times n)$ and invertible with SVD $A = U\Sigma V^T$, then $A^{-1} = V\Sigma U^T$.

Problem 6 (True/False). If A is $n \times n$ and symmetric, then the singular values of A coincide with the eigenvalues of A.

Problem 7 (7.1 #18). Consider the following matrix:

$$A = \begin{bmatrix} 1 & -6 & 4 \\ -6 & 2 & -2 \\ 4 & -2 & -3 \end{bmatrix}.$$

The eigenvalues are -3, -6, 9. Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D.

Problem 8 (7.2 #8). Let A be the matrix of the quadratic form

$$9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3.$$

It can be shown that the eigenvalues of A are 3, 9, and 15. Find an orthogonal matrix P such that the change of variable $\underline{x} = P\underline{y}$ transforms $\underline{x}^T A \underline{x}$ into a quadratic form with no cross-product term. Give P and the new quadratic form.

Problem 9 (7.2 #20). What is the largest value of the quadratic form $5x_1^2 - 3x_2^2$ if $\underline{x}^T \underline{x} = 1$?

Problem 10 (7.3 #10). Find an SVD of the following matrix:

$$A = \begin{bmatrix} 7 & 1\\ 5 & 5\\ 0 & 0 \end{bmatrix}$$