Math 54: Worksheet \#19, Solutions

Name: \qquad Date: November 9, 2021
Fall 2021
Problem 1 (True/False). All real symmetric matrices are diagonalizable over \mathbb{R}.
Solution. True. By the spectral theorem, all real symmetric matrices are actually orthogonally diagonalizable, meaning that there exists an orthogonal matrix P and diagonal matrix D such that $A=P D P^{T}$.

Problem 2 (True/False). Eigenspaces of a real symmetric matrix are mutually orthogonal.
Solution. True. One way to see this is through the spectral theorem: we have that $A=P D P^{T}$, where P is orthogonl and D is diagonal. We know that P contains vectors that form the basis of each eigenspace, and since P is orthogonal, each of those eigenspaces have bases that are orthogonal to one another. This shows that they are mutually orthogonal.

Problem 3 (True/False). A quadratic form Q on \mathbb{R}^{n} corresponds to a unique real symmetric matrix A by $Q(\underline{x})=\underline{x}^{T} A \underline{x}$.
Solution. True. Any quadratic form Q can be written as $Q(\underline{x})=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+\sum_{i<j}^{n} a_{i j} x_{i} x_{j}$. We can write this quadratic form as $Q(\underline{x})=\underline{x}^{T} A \underline{x}$, where

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} / 2 & a_{13} / 2 & \cdots & a_{1 n} / 2 \\
a_{12} / 2 & a_{22} & a_{23} / 2 & \cdots & a_{2 n} / 2 \\
\vdots & & & & \vdots \\
a_{1 n} / 2 & a_{2 n} / 2 & \cdots & a_{n-1, n} / 2 & a_{n n}
\end{array}\right] .
$$

Take any other symmetric matrix A^{\prime}, and by expanding out $\underline{x}^{T} A^{\prime} \underline{x}$, you'll see that it is different than $Q(\underline{x})$.
Problem 4 (True/False). The eigenvalues of $A^{T} A$ and $A A^{T}$ are real and non-negative.
Solution. True. If λ is an eigenvalue of $A^{T} A$ with eigenvector \underline{v}, then compute $\underline{v}^{T}\left(A^{T} A\right) \underline{v}$ in two different ways:

$$
\begin{aligned}
& \underline{v}^{T}\left(A^{T} A\right) \underline{v}=\left(\underline{v}^{T} A^{T}\right)(A \underline{v})=(A \underline{v})^{T}(A \underline{v})=(A \underline{v}) \cdot(A \underline{v}) \\
& \underline{v}^{T}\left(A^{T} A\right) \underline{v}=\underline{v}^{T}\left(\left(A^{T} A\right) \underline{v}\right)=\underline{v}^{T}(\lambda \underline{v})=\lambda \underline{v}^{T} \underline{v}=\lambda(\underline{v} \cdot \underline{v}) .
\end{aligned}
$$

Now, $\underline{v} \cdot \underline{v}>0$ since $\underline{v} \neq 0$, and $(A \underline{v}) \cdot(A \underline{v}) \geq 0$. Thus, $\lambda=((A \underline{v}) \cdot(A \underline{v})) /(\underline{v} \cdot \underline{v}) \geq 0$.
Problem 5 (True/False). If A is square $(n \times n)$ and invertible with SVD $A=U \Sigma V^{T}$, then $A^{-1}=V \Sigma U^{T}$. Solution. False. We can try computing $A A^{-1}$:

$$
A A^{-1}=\left(U \Sigma V^{T}\right)\left(V \Sigma U^{T}\right)=U \Sigma\left(V^{T} V\right) \Sigma U^{T}=U \Sigma^{2} U^{T},
$$

where we use that $V^{T} V=I$. However, there is no reason to think that this simplifies to I (like if $\Sigma=2 I$, then $\left.U \Sigma^{2} U^{T}=U(4 I) U^{T}=4 U U^{T}=4 I\right)$.

In fact, try inverting A : we get $A^{-1}=\left(U \Sigma V^{T}\right)^{-1}=\left(V^{T}\right)^{-1} \Sigma^{-1} U^{-1}=V \Sigma^{-1} U^{T}$. Here, Σ^{-1} is the diagonal matrix with $1 / \sigma_{i}$ as it's i-th diagonal element. This exists since A is invertible, so each singular value of A must be strictly positive.

Problem 6 (True/False). If A is $n \times n$ and symmetric, then the singular values of A coincide with the eigenvalues of A.
Solution. False. Singular values must always be non-negative. If we let $A=-I$, then A has only -1 as its eigenvalue, which can't coincide with any of the non-negative singular values. The true statement is that the singular values of A coincide with the absolute values of the eigenvalues of A. I'll leave that to you to show!

Problem 7 (7.1 \#18). Consider the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & -6 & 4 \\
-6 & 2 & -2 \\
4 & -2 & -3
\end{array}\right]
$$

The eigenvalues are $-3,-6,9$. Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D.

Solution. Since we were given the eigenvalues already, we just need to find the corresponding eigenspaces. For $\lambda=-3$, we find $\operatorname{Nul}(A+3 I)$:

$$
\left[\begin{array}{ccc|c}
4 & -6 & 4 & 0 \\
-6 & 5 & -2 & 0 \\
4 & -2 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
2 & -3 & 2 & 0 \\
0 & -4 & 4 & 0 \\
0 & 4 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
2 & -3 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
2 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that x_{3} is free, $x_{2}=x_{3}$ and $2 x_{1}=x_{3}$, which gives us $x_{1}=x_{3} / 2$. Thus, we get that the solutions have the form $\underline{x}=\left[\begin{array}{c}x_{3} / 2 \\ x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}1 / 2 \\ 1 \\ 1\end{array}\right]$. We normalize the eigenvector $\underline{u}_{1}=\left[\begin{array}{c}1 / 2 \\ 1 \\ 1\end{array}\right]$ (since we want an orthogonal matrix P):

$$
\left\|\underline{u}_{1}\right\|=\sqrt{\underline{u}_{1} \cdot \underline{u}_{1}}=\sqrt{\frac{1}{4}+1+1}=\sqrt{\frac{9}{4}}=\frac{3}{2} \quad \Longrightarrow \quad \underline{\hat{u}}_{1}=\underline{u}_{1} /\left\|\underline{u}_{1}\right\|=\frac{2}{3}\left[\begin{array}{c}
1 / 2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]
$$

For $\lambda=-6$, we find $\operatorname{Nul}(A+6 I)$:

$$
\left[\begin{array}{ccc|c}
7 & -6 & 4 & 0 \\
-6 & 8 & -2 & 0 \\
4 & -2 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
7 & -6 & 4 & 0 \\
0 & 20 & 10 & 0 \\
0 & 10 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
7 & -6 & 4 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
7 & 0 & 7 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that x_{3} is free, $x_{1}=-x_{3}$, and $2 x_{2}=-x_{3}$, which gives us $x_{2}=-x_{3} / 2$. Thus, we get that the solutions have the form $\underline{x}=\left[\begin{array}{c}-x_{3} \\ -x_{3} / 2 \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}-1 \\ -1 / 2 \\ 1\end{array}\right]$. We normalize the eigenvector $\underline{u}_{2}=\left[\begin{array}{c}-1 \\ -1 / 2 \\ 1\end{array}\right]$ to get $\underline{\hat{u}}_{2}=\left[\begin{array}{c}-2 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right]$.

For $\lambda=9$, we find $\operatorname{Nul}(A-9 I)$:

$$
\left[\begin{array}{ccc|c}
-8 & -6 & 4 & 0 \\
-6 & -7 & -2 & 0 \\
4 & -2 & -12 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
4 & 3 & -2 & 0 \\
0 & -5 & -10 & 0 \\
0 & -5 & -10 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
4 & 3 & -2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
4 & 0 & -8 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

We see that x_{3} is free, $x_{1}=2 x_{3}$, and $x_{2}=-2 x_{3}$. Thus, we get that the solutions have the form $\underline{x}=$ $\left[\begin{array}{c}2 x_{3} \\ -2 x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$. We normalize the eigenvector $\underline{u}_{3}=\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$ to get $\underline{\hat{u}}_{3}=\left[\begin{array}{c}2 / 3 \\ -2 / 3 \\ 1 / 3\end{array}\right]$.

Thus, we have that

$$
P=\left[\begin{array}{ccc}
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right], \quad D=\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -6 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

Problem $8(7.2 \# 8)$. Let A be the matrix of the quadratic form

$$
9 x_{1}^{2}+7 x_{2}^{2}+11 x_{3}^{2}-8 x_{1} x_{2}+8 x_{1} x_{3} .
$$

It can be shown that the eigenvalues of A are 3,9 , and 15 . Find an orthogonal matrix P such that the change of variable $\underline{x}=P y$ transforms $\underline{x}^{T} A \underline{x}$ into a quadratic form with no cross-product term. Give P and the new quadratic form.

Solution. The diagonals of the matrix are the coefficients of the squared terms, and the off-diagonals are $1 / 2$ of the coefficients of the cross-terms. Thus, we have that

$$
A=\left[\begin{array}{ccc}
9 & -4 & 4 \\
-4 & 7 & 0 \\
4 & 0 & 11
\end{array}\right]
$$

We want to orthogonally diagonalize this to find P, which amounts to finding the eigenspaces of each eigenvalue.

For $\lambda=3$, we find $\operatorname{Nul}(A-3 I)$:

$$
\left[\begin{array}{ccc|c}
6 & -4 & 4 & 0 \\
-4 & 4 & 0 & 0 \\
4 & 0 & 8 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
3 & -2 & 2 & 0 \\
0 & 4 & 8 & 0 \\
0 & 8 & 16 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
3 & -2 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
3 & 0 & 6 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

We see that x_{3} is free, $x_{1}=-2 x_{3}$, and $x_{2}=-2 x_{3}$. Thus, we get that the solutions have the form $\underline{x}=\left[\begin{array}{c}-2 x_{3} \\ -2 x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right]$. We normalize the eigenvector $\underline{u}_{1}=\left[\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right]$ to get $\underline{\hat{u}}_{1}=\left[\begin{array}{c}-2 / 3 \\ -2 / 3 \\ 1 / 3\end{array}\right]$.

For $\lambda=9$, we find $\operatorname{Nul}(A-9 I)$:

$$
\left[\begin{array}{ccc|c}
0 & -4 & 4 & 0 \\
-4 & -2 & 0 & 0 \\
4 & 0 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
0 & -1 & 1 & 0 \\
2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
2 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
2 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that x_{3} is free, $2 x_{1}=-x_{3}$, and $x_{2}=x_{3}$. Thus, we get that the solutions have the form $\underline{x}=$ $\left[\begin{array}{c}-x_{3} / 2 \\ x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right]$. We normalize the eigenvector $\underline{u}_{2}=\left[\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right]$ to get $\underline{\hat{u}}_{2}=\left[\begin{array}{c}-1 / 3 \\ 2 / 3 \\ 2 / 3\end{array}\right]$.

For $\lambda=15$, we find $\operatorname{Nul}(A-15 I)$:

$$
\left[\begin{array}{ccc|c}
-6 & -4 & 4 & 0 \\
-4 & -8 & 0 & 0 \\
4 & 0 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
4 & 0 & -4 & 0 \\
0 & -8 & -4 & 0 \\
0 & -8 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

We see that x_{3} is free, $x_{1}=x_{3}$, and $2 x_{2}=-x_{3}$. Thus, we get that the solutions have the form $\underline{x}=$ $\left[\begin{array}{c}x_{3} \\ -x_{3} / 2 \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}1 \\ -1 / 2 \\ 1\end{array}\right]$. We normalize the eigenvector $\underline{u}_{3}=\left[\begin{array}{c}1 \\ -1 / 2 \\ 1\end{array}\right]$ to get $\underline{u}_{3}=\left[\begin{array}{c}2 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right]$.

Thus, we have that

$$
P=\left[\begin{array}{ccc}
-2 / 3 & -1 / 3 & 2 / 3 \\
-2 / 3 & 2 / 3 & -1 / 3 \\
1 / 3 & 2 / 3 & 2 / 3
\end{array}\right]
$$

The new quadratic form corresponds to the diagonal matrix $D=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 15\end{array}\right]$:

$$
\underline{y}^{T} D \underline{y}=3 y_{1}^{2}+9 y_{2}^{2}+15 y_{3}^{2} .
$$

Problem $9(7.2 \# 20)$. What is the largest value of the quadratic form $5 x_{1}^{2}-3 x_{2}^{2}$ if $\underline{x}^{T} \underline{x}=1$?
Solution. This quadratic form corresponds to the matrix $A=\left[\begin{array}{cc}5 & 0 \\ 0 & -3\end{array}\right]$. This is a diagonal matrix that has eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=-3$, with corresponding eigenvectors $\underline{v}_{1}=\underline{e}_{1}$ and $\underline{v}_{2}=\underline{e}_{2}$. The quadratic form is maximized along the principal axis corresponding to the largest eigenvalue. Thus, we want to find \underline{x} parallel to \underline{e}_{1} such that $\underline{x}^{T} \underline{x}=1$, which is exactly $\underline{x}=\underline{e}_{1}$. Plugging in $\underline{x}=\underline{e}_{1}$, we have that $5 x_{1}^{2}-3 x_{2}^{2}=5(1)^{2}-3(0)^{2}=5$.

Problem 10 (7.3 \#10). Find an SVD of the following matrix:

$$
A=\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]
$$

Solution. First, we find $A^{T} A$ and its eigenvalues:

$$
A^{T} A=\left[\begin{array}{lll}
7 & 5 & 0 \\
1 & 5 & 0
\end{array}\right]\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
74 & 32 \\
32 & 26
\end{array}\right] .
$$

We find the characteristic polynomial:

$$
\operatorname{det}\left(A^{T} A-\lambda I\right)=\operatorname{det}\left[\begin{array}{cc}
74-\lambda & 32 \\
32 & 26-\lambda
\end{array}\right]=(74-\lambda)(26-\lambda)-32^{2}=\lambda^{2}-100 \lambda+900=(\lambda-10)(\lambda-90)
$$

Thus, we have the eigenvalues $\lambda_{1}=90$ and $\lambda_{2}=10$. The corresponding singular values are $\sigma_{1}=\sqrt{90}=3 \sqrt{10}$ and $\sigma_{2}=\sqrt{10}$. Thus, we have that Σ (which has the same size as A) is:

$$
\Sigma=\left[\begin{array}{cc}
3 \sqrt{10} & 0 \\
0 & \sqrt{10} \\
0 & 0
\end{array}\right]
$$

To find the matrix V, we find the corresponding eigenvectors of $A^{T} A$. First, we find $\operatorname{Nul}(A-90 I)$:

$$
\left[\begin{array}{cc|c}
-16 & 32 & 0 \\
32 & -64 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that x_{2} is free and $x_{1}=2 x_{2}$, which means that $\underline{x}=\left[\begin{array}{c}2 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]$. We normalize the eigenvector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ to get $\underline{v}_{1}=\left[\begin{array}{l}2 / \sqrt{5} \\ 1 / \sqrt{5}\end{array}\right]$. I will leave it up to you to check that a unit eigenvector corresponding to $\lambda_{2}=10$ is $\underline{v}_{2}=\left[\begin{array}{c}-1 / \sqrt{5} \\ 2 / \sqrt{5}\end{array}\right]$. Thus, we have that

$$
V=\left[\begin{array}{cc}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]
$$

Finally, to find U, we can find the first two columns from computing $A \underline{v}_{i} / \sigma_{i}$:

$$
\begin{gathered}
\underline{u}_{1}=A \underline{v}_{1} / \sigma_{1}=\frac{1}{3 \sqrt{10}}\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]=\frac{1}{3 \sqrt{10}}\left[\begin{array}{c}
15 / \sqrt{5} \\
15 / \sqrt{5} \\
0
\end{array}\right]=\frac{5}{\sqrt{50}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
\underline{u}_{2}=A \underline{v}_{2} / \sigma_{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{ll}
7 & 1 \\
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\frac{1}{\sqrt{10}}\left[\begin{array}{c}
-5 / \sqrt{5} \\
5 / \sqrt{5} \\
0
\end{array}\right]=\frac{5}{\sqrt{50}}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]
\end{gathered}
$$

To find the third column of U, we need to extend $\left\{\underline{u}_{1}, \underline{u}_{2}\right\}$ to an orthonormal basis of \mathbb{R}^{3}. I will let you check that $\underline{u}_{3}=\underline{e}_{3}$ does the job. Thus, we get that

$$
U=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

