
Math 54: Worksheet #19, Solutions

Name: Date: November 9, 2021

Fall 2021

Problem 1 (True/False). All real symmetric matrices are diagonalizable over R.

Solution. True. By the spectral theorem, all real symmetric matrices are actually orthogonally diagonalizable,
meaning that there exists an orthogonal matrix P and diagonal matrix D such that A = PDPT .

Problem 2 (True/False). Eigenspaces of a real symmetric matrix are mutually orthogonal.

Solution. True. One way to see this is through the spectral theorem: we have that A = PDPT , where P is
orthogonl and D is diagonal. We know that P contains vectors that form the basis of each eigenspace, and
since P is orthogonal, each of those eigenspaces have bases that are orthogonal to one another. This shows
that they are mutually orthogonal.

Problem 3 (True/False). A quadratic form Q on Rn corresponds to a unique real symmetric matrix A by
Q(x) = xTAx.

Solution. True. Any quadratic form Q can be written as Q(x) =
∑n

i=1 aiix
2
i +

∑n
i<j aijxixj . We can write

this quadratic form as Q(x) = xTAx, where

A =


a11 a12/2 a13/2 · · · a1n/2
a12/2 a22 a23/2 · · · a2n/2

...
...

a1n/2 a2n/2 · · · an−1,n/2 ann

 .
Take any other symmetric matrix A′, and by expanding out xTA′x, you’ll see that it is different than Q(x).

Problem 4 (True/False). The eigenvalues of ATA and AAT are real and non-negative.

Solution. True. If λ is an eigenvalue of ATA with eigenvector v, then compute vT (ATA)v in two different
ways:

vT (ATA)v = (vTAT )(Av) = (Av)T (Av) = (Av) · (Av)

vT (ATA)v = vT ((ATA)v) = vT (λv) = λvT v = λ(v · v).

Now, v · v > 0 since v 6= 0, and (Av) · (Av) ≥ 0. Thus, λ = ((Av) · (Av)) /(v · v) ≥ 0.

Problem 5 (True/False). If A is square (n× n) and invertible with SVD A = UΣV T , then A−1 = V ΣUT .

Solution. False. We can try computing AA−1:

AA−1 = (UΣV T )(V ΣUT ) = UΣ(V TV )ΣUT = UΣ2UT ,

where we use that V TV = I. However, there is no reason to think that this simplifies to I (like if Σ = 2I,
then UΣ2UT = U(4I)UT = 4UUT = 4I).

In fact, try inverting A: we get A−1 = (UΣV T )−1 = (V T )−1Σ−1U−1 = V Σ−1UT . Here, Σ−1 is the
diagonal matrix with 1/σi as it’s i-th diagonal element. This exists since A is invertible, so each singular
value of A must be strictly positive.

Problem 6 (True/False). If A is n × n and symmetric, then the singular values of A coincide with the
eigenvalues of A.

Solution. False. Singular values must always be non-negative. If we let A = −I, then A has only −1 as its
eigenvalue, which can’t coincide with any of the non-negative singular values. The true statement is that the
singular values of A coincide with the absolute values of the eigenvalues of A. I’ll leave that to you to show!
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Problem 7 (7.1 #18). Consider the following matrix:

A =

 1 −6 4
−6 2 −2
4 −2 −3

 .
The eigenvalues are −3,−6, 9. Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a
diagonal matrix D.

Solution. Since we were given the eigenvalues already, we just need to find the corresponding eigenspaces.
For λ = −3, we find Nul(A+ 3I): 4 −6 4 0

−6 5 −2 0
4 −2 0 0

 −→
2 −3 2 0

0 −4 4 0
0 4 −4 0

 −→
2 −3 2 0

0 1 −1 0
0 0 0 0

 −→
2 0 −1 0

0 1 −1 0
0 0 0 0

 .
We see that x3 is free, x2 = x3 and 2x1 = x3, which gives us x1 = x3/2. Thus, we get that the solutions have

the form x =

x3/2x3
x3

 = x3

1/2
1
1

. We normalize the eigenvector u1 =

1/2
1
1

 (since we want an orthogonal

matrix P ):

‖u1‖ =
√
u1 · u1 =

√
1

4
+ 1 + 1 =

√
9

4
=

3

2
=⇒ û1 = u1/‖u1‖ =

2

3

1/2
1
1

 =

1/3
2/3
2/3


For λ = −6, we find Nul(A+ 6I): 7 −6 4 0
−6 8 −2 0
4 −2 3 0

 −→
7 −6 4 0

0 20 10 0
0 10 5 0

 −→
7 −6 4 0

0 2 1 0
0 0 0 0

 −→
7 0 7 0

0 2 1 0
0 0 0 0

 −→
1 0 1 0

0 2 1 0
0 0 0 0

 .
We see that x3 is free, x1 = −x3, and 2x2 = −x3, which gives us x2 = −x3/2. Thus, we get that the solutions

have the form x =

 −x3−x3/2
x3

 = x3

 −1
−1/2

1

. We normalize the eigenvector u2 =

 −1
−1/2

1

 to get û2 =

−2/3
−1/3
2/3

.

For λ = 9, we find Nul(A− 9I):−8 −6 4 0
−6 −7 −2 0
4 −2 −12 0

→
4 3 −2 0

0 −5 −10 0
0 −5 −10 0

→
4 3 −2 0

0 1 2 0
0 0 0 0

→
4 0 −8 0

0 1 2 0
0 0 0 0

→
1 0 −2 0

0 1 2 0
0 0 0 0

 .
We see that x3 is free, x1 = 2x3, and x2 = −2x3. Thus, we get that the solutions have the form x = 2x3
−2x3
x3

 = x3

 2
−2
1

. We normalize the eigenvector u3 =

 2
−2
1

 to get û3 =

 2/3
−2/3
1/3

.

Thus, we have that

P =

1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

 , D =

−3 0 0
0 −6 0
0 0 9

 .
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Problem 8 (7.2 #8). Let A be the matrix of the quadratic form

9x21 + 7x22 + 11x23 − 8x1x2 + 8x1x3.

It can be shown that the eigenvalues of A are 3, 9, and 15. Find an orthogonal matrix P such that the change
of variable x = Py transforms xTAx into a quadratic form with no cross-product term. Give P and the new
quadratic form.

Solution. The diagonals of the matrix are the coefficients of the squared terms, and the off-diagonals are 1/2
of the coefficients of the cross-terms. Thus, we have that

A =

 9 −4 4
−4 7 0
4 0 11

 .
We want to orthogonally diagonalize this to find P , which amounts to finding the eigenspaces of each
eigenvalue.

For λ = 3, we find Nul(A− 3I): 6 −4 4 0
−4 4 0 0
4 0 8 0

 −→
3 −2 2 0

0 4 8 0
0 8 16 0

 −→
3 −2 2 0

0 1 2 0
0 0 0 0

 −→
3 0 6 0

0 1 2 0
0 0 0 0

 −→
1 0 2 0

0 1 2 0
0 0 0 0

 .
We see that x3 is free, x1 = −2x3, and x2 = −2x3. Thus, we get that the solutions have the form

x =

−2x3
−2x3
x3

 = x3

−2
−2
1

. We normalize the eigenvector u1 =

−2
−2
1

 to get û1 =

−2/3
−2/3
1/3

.

For λ = 9, we find Nul(A− 9I): 0 −4 4 0
−4 −2 0 0
4 0 2 0

 −→
0 −1 1 0

2 1 0 0
2 0 1 0

 −→
2 0 1 0

0 1 −1 0
0 −1 1 0

 −→
2 0 1 0

0 1 −1 0
0 0 0 0

 .
We see that x3 is free, 2x1 = −x3, and x2 = x3. Thus, we get that the solutions have the form x =−x3/2x3

x3

 = x3

−1/2
1
1

. We normalize the eigenvector u2 =

−1/2
1
1

 to get û2 =

−1/3
2/3
2/3

.

For λ = 15, we find Nul(A− 15I):−6 −4 4 0
−4 −8 0 0
4 0 −4 0

 −→
4 0 −4 0

0 −8 −4 0
0 −8 −4 0

 −→
1 0 −1 0

0 2 1 0
0 0 0 0

 .
We see that x3 is free, x1 = x3, and 2x2 = −x3. Thus, we get that the solutions have the form x = x3
−x3/2
x3

 = x3

 1
−1/2

1

. We normalize the eigenvector u3 =

 1
−1/2

1

 to get û3 =

 2/3
−1/3
2/3

.

Thus, we have that

P =

−2/3 −1/3 2/3
−2/3 2/3 −1/3
1/3 2/3 2/3

 .
The new quadratic form corresponds to the diagonal matrix D =

3 0 0
0 9 0
0 0 15

:

yTDy = 3y21 + 9y22 + 15y23 .
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Problem 9 (7.2 #20). What is the largest value of the quadratic form 5x21 − 3x22 if xTx = 1?

Solution. This quadratic form corresponds to the matrix A =

[
5 0
0 −3

]
. This is a diagonal matrix that has

eigenvalues λ1 = 5 and λ2 = −3, with corresponding eigenvectors v1 = e1 and v2 = e2. The quadratic form is
maximized along the principal axis corresponding to the largest eigenvalue. Thus, we want to find x parallel to
e1 such that xTx = 1, which is exactly x = e1. Plugging in x = e1, we have that 5x21−3x22 = 5(1)2−3(0)2 = 5.
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Problem 10 (7.3 #10). Find an SVD of the following matrix:

A =

7 1
5 5
0 0


Solution. First, we find ATA and its eigenvalues:

ATA =

[
7 5 0
1 5 0

]7 1
5 5
0 0

 =

[
74 32
32 26

]
.

We find the characteristic polynomial:

det(ATA− λI) = det

[
74− λ 32

32 26− λ

]
= (74− λ)(26− λ)− 322 = λ2 − 100λ+ 900 = (λ− 10)(λ− 90).

Thus, we have the eigenvalues λ1 = 90 and λ2 = 10. The corresponding singular values are σ1 =
√

90 = 3
√

10
and σ2 =

√
10. Thus, we have that Σ (which has the same size as A) is:

Σ =

3
√

10 0

0
√

10
0 0


To find the matrix V , we find the corresponding eigenvectors of ATA. First, we find Nul(A− 90I):[

−16 32 0
32 −64 0

]
−→

[
1 −2 0
0 0 0

]
.

We see that x2 is free and x1 = 2x2, which means that x =

[
2x2
x2

]
= x2

[
2
1

]
. We normalize the eigenvector[

2
1

]
to get v1 =

[
2/
√

5

1/
√

5

]
. I will leave it up to you to check that a unit eigenvector corresponding to λ2 = 10

is v2 =

[
−1/
√

5

2/
√

5

]
. Thus, we have that

V =

[
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

]
Finally, to find U , we can find the first two columns from computing Avi/σi:

u1 = Av1/σ1 =
1

3
√

10

7 1
5 5
0 0

[2/√5

1/
√

5

]
=

1

3
√

10

15/
√

5

15/
√

5
0

 =
5√
50

1
1
0

 =

1/
√

2

1/
√

2
0


u2 = Av2/σ2 =

1√
10

7 1
5 5
0 0

[−1/
√

5

2/
√

5

]
=

1√
10

−5/
√

5

5/
√

5
0

 =
5√
50

−1
1
0

 =

−1/
√

2

1/
√

2
0


To find the third column of U , we need to extend {u1, u2} to an orthonormal basis of R3. I will let you check
that u3 = e3 does the job. Thus, we get that

U =

1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1

 .
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