Math 54: Worksheet #19, Solutions

Name: Date: November 9, 2021

Fall 2021

Problem 1 (True/False). All real symmetric matrices are diagonalizable over R.

Solution. True. By the spectral theorem, all real symmetric matrices are actually orthogonally diagonalizable,
meaning that there exists an orthogonal matrix P and diagonal matrix D such that A = PDPT.

Problem 2 (True/False). Eigenspaces of a real symmetric matrix are mutually orthogonal.

Solution. True. One way to see this is through the spectral theorem: we have that A = PDPT, where P is
orthogonl and D is diagonal. We know that P contains vectors that form the basis of each eigenspace, and
since P is orthogonal, each of those eigenspaces have bases that are orthogonal to one another. This shows
that they are mutually orthogonal.

Problem 3 (True/False). A quadratic form @ on R™ corresponds to a unique real symmetric matrix A by
Qz) =27 Az.

Solution. True. Any quadratic form @ can be written as Q(x) = Z?:l a;w? + Z;;j ai;x;x;. We can write
this quadratic form as Q(z) = 7 Az, where

a1 a12/2  aiz/2 a1n/2
a12/2  age  ags/2 Ao /2
aln/2 a2n/2 U an—l,n/2 Ann

Take any other symmetric matrix A’, and by expanding out 7 A’z, you'll see that it is different than Q(z).

Problem 4 (True/False). The eigenvalues of AT A and AAT are real and non-negative.

Solution. True. If ) is an eigenvalue of AT A with eigenvector v, then compute v?' (AT A)v in two different
ways:

v (AT Ay = (v AT)(Av) = (Av)”
v (AT Ay = 0" (AT A)p) = 0" (A v
Now, v -v > 0 since v # 0, and (Av) - (Av) > 0. Thus, A = ((Av) - (Av)) /(v-v) > 0.

Problem 5 (True/False). If A is square (n x n) and invertible with SVD A = UXV7T then A~! = VXUT.
Solution. False. We can try computing AA~!:
AAT = uxvhveuT) = us(viv)suT = Uus?uT,

where we use that V7'V = I. However, there is no reason to think that this simplifies to I (like if ¥ = 21,
then UX2UT = UM UT = 4UUT = 4I).

In fact, try inverting A: we get A1 = (USVT)™1 = (VI)71x-1Uy~1 = VE-1UT. Here, £7! is the
diagonal matrix with 1/0; as it’s i-th diagonal element. This exists since A is invertible, so each singular
value of A must be strictly positive.

Problem 6 (True/False). If A is n x n and symmetric, then the singular values of A coincide with the
eigenvalues of A.

Solution. False. Singular values must always be non-negative. If we let A = —I, then A has only —1 as its
eigenvalue, which can’t coincide with any of the non-negative singular values. The true statement is that the
singular values of A coincide with the absolute values of the eigenvalues of A. I'll leave that to you to show!



Problem 7 (7.1 #18). Consider the following matrix:

1 -6 4
A=|-6 2 =2
4 -2 =3

The eigenvalues are —3, —6,9. Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a
diagonal matrix D.

Solution. Since we were given the eigenvalues already, we just need to find the corresponding eigenspaces.
For A = —3, we find Nul(A + 31):

4 -6 4|0 2 -3 210 2 -3 2|0 2 0 —-11]0
-6 5 -2(0l—|0 -4 4 |0 —1|0 1 —=-1|0]—10 1 =110
4 -2 010 0 4 —-410 0 0 010 00 010
We see that x3 is free, 9 = x5 and 2z, = x3, which gives us 21 = x3/2. Thus, we get that the solutions have
x3/2 1/2 [1/2
the formz = | 3 | =x3 | 1 |. We normalize the eigenvector u; = | 1 | (since we want an orthogonal
X3 1 1

matrix P):

lull = vVay - a =/~ +1+l=4/-=5 = @=u/lyl=5]1]=|2/3
4 42 3|, 2/3

For A = —6, we find Nul(A + 61):

7T —6 4]0 7T —6 410 7 —6 410 7 0 7|0 1 0 1]0
-6 8 -2|0f— {0 20 10/0{ —1]0 2 1|0f—1]0 2 1|0 —|0 2 1|0
4 -2 3|0 0 10 5|0 0 0 010 0 0 0|0 0 0 0|0
We see that x3 is free, x; = —x3, and 2z9 = —x3, which gives us o = —x3/2. Thus, we get that the solutions
—x3 -1 -1 -2/3
have the form z = | —x3/2| = x3 |—1/2|. We normalize the eigenvector u, = |—1/2| to get 4, = |—1/3].
T3 1 1 2/3
For A =9, we find Nul(A — 9I):
-8 —6 4 |0 4 3 =210 4 3 =210 4 0 =810 1 0 =20
-6 -7 -2|0{ -0 -5 —-10|0[—1(0 1 2 |0]—=1]0 1 2|0l =0 1 210
4 -2 =120 0 -5 =100 0 0 010 0 0 010 0 0 010
We see that x3 is free, z1 = 2x3, and o = —2x3. Thus, we get that the solutions have the form z =
213 2 2 2/3
—2x3| =3 | —2|. We normalize the eigenvector u; = |—2| to get 453 = |—2/3].
T3 1 1 1/3
Thus, we have that
1/3 -2/3 2/3 -3 0 0
rP=12/3 -1/3 -2/3], D=0 -6 0
2/3  2/3 1/3 0 0 9



Problem 8 (7.2 #8). Let A be the matrix of the quadratic form
QLC% + 71‘% + llxg — 8x1x9 + 8x123.

It can be shown that the eigenvalues of A are 3, 9, and 15. Find an orthogonal matrix P such that the change
of variable z = Py transforms 27 Az into a quadratic form with no cross-product term. Give P and the new
quadratic form.

Solution. The diagonals of the matrix are the coefficients of the squared terms, and the off-diagonals are 1/2
of the coefficients of the cross-terms. Thus, we have that

9 —4 4
A=1|-4 7 0
4 0 11

We want to orthogonally diagonalize this to find P, which amounts to finding the eigenspaces of each
eigenvalue.
For A\ = 3, we find Nul(A — 3I):

6 —4 4|0 3 -2 210 3 -2 210 3 0 6|0 1 0 2]0
-4 4 0|0 —1]0 4 8 |0|—1]0 1 2|0 —1]0 1 2(0f—1]0 1 2]0
4 0 8|0 0 8 16|0 0 0 010 0 0 00 0 0 0|0
We see that z3 is free, 1 = —2x3, and zo = —2x3. Thus, we get that the solutions have the form
—2x3 -2 -2 —2/3
x = |—2x3| =x3 | —2|. We normalize the eigenvector u; = |—2| to get 4, = |—2/3].
T3 1 1 1/3
For A =9, we find Nul(A — 9I):
0 —4 410 0 -1 110 2 0 110 2 0 110
-4 -2 0|0 —12 1 0|0 —1|0 1 —=1]0]—1]0 1 —-110
4 0 210 2 0 1|0 0 -1 110 0 0 010
We see that x3 is free, 207 = —x3, and xo = x3. Thus, we get that the solutions have the form x =
—x3/2 —1/2 -1/2 -1/3
x3 =x3 | 1 |. We normalize the eigenvector u, = 1 to get @, = | 2/3
T3 1 1 2/3
For A = 15, we find Nul(4 — 151):
-6 -4 4 1|0 4 0 —-41|0 1 0 —-1|0
-4 -8 0 |0f — 1|0 -8 —4]0] — |0 2 1 1|0
4 0 —-41|0 0 -8 —410 0 0 010
We see that x3 is free, x1 = x3, and 229 = —z3. Thus, we get that the solutions have the form z =
T3 1 1 2/3
—x3/2| = a3 [ —1/2|. We normalize the eigenvector us = |—1/2| to get 43 = |—1/3].
x3 1 1 2/3
Thus, we have that
-2/3 -1/3 2/3
P=1|-2/3 2/3 -1/3
1/3 2/3 2/3
3 0 0
The new quadratic form corresponds to the diagonal matrix D= |0 9 0 |:
0 0 15

y" Dy = 3y3 + 9y3 + 15y3.



Problem 9 (7.2 #20). What is the largest value of the quadratic form 527 — 323 if 272 = 1?

5 0

0 -3
eigenvalues A\; = 5 and A9 = —3, with corresponding eigenvectors v; = e; and v, = e5. The quadratic form is
maximized along the principal axis corresponding to the largest eigenvalue. Thus, we want to find x parallel to
e, such that 27z = 1, which is exactly z = e,. Plugging in x = ¢, we have that 527 — 323 = 5(1)2—-3(0)2 = 5.

Solution. This quadratic form corresponds to the matrix A = [ } . This is a diagonal matrix that has



Problem 10 (7.3 #10). Find an SVD of the following matrix:

71
A=1|5 5
0 0
Solution. First, we find AT A and its eigenvalues:
7 1
T, |7 5 0 |74 32
AALBOggBQ?G'

We find the characteristic polynomial:
T T4 — A 32 2 2
det(A* A — M) = det 39 2% — \ = (74— )X)(26 — A\) — 32° = A= — 100X + 900 = (A — 10)(A — 90).

Thus, we have the eigenvalues Ay = 90 and Ay = 10. The corresponding singular values are o3 = v/90 = 3v/10
and o3 = v/10. Thus, we have that ¥ (which has the same size as A) is:

[3v/10 0
=] 0 V10
0 0

To find the matrix V, we find the corresponding eigenvectors of AT A. First, we find Nul(A — 901):

-16 32 [0 1 —2]0
32 —64|0 0 0 |of

252] =29 [ﬂ . We normalize the eigenvector

We see that x5 is free and xy = 2x5, which means that x = [
2

[ﬂ to get v; = E;g . I will leave it up to you to check that a unit eigenvector corresponding to Ay = 10

. _[—-1/v/5
is vy = { 2/V5 | Thus, we have that

V:F/\/S —1/4/5
1/V5  2/V5

Finally, to find U, we can find the first two columns from computing Av,/o;:

1 Fé[2/5 o [BVEL g T (V2
0 0

u, = Av, Jo1 = —=

1/v3] ~ 3V10 15/0\/5 ~ V30 é - 1/8@

LYY L [-5/V5 s [-1 —1/\/2;
o sl =om | o = [ ] = 7

To find the third column of U, we need to extend {u;, u,} to an orthonormal basis of R3. I will let you check
that u; = e5 does the job. Thus, we get that

1/vV2 —1/v/2 0
U=1|1/v2 1/V/2 0
0 0 1



