Math 54: Worksheet \#20, Solutions

Name: \qquad Date: November 16, 2021

Fall 2021

Problem 1 (True/False). The following initial value problem has a unique solution:

$$
y^{\prime \prime}+y^{\prime}=0 ; \quad y(0)=2
$$

Solution. False. A second-order equation has to have two initial conditions for the solution to be unique!

Problem 2 (True/False). The equation $y^{\prime \prime}-y^{2}=0$ is a linear, homogeneous, second-order equation.
Solution. False. This is not linear because of the y^{2} term. A linear differential equation has the general form:

$$
\left.a_{n}(x) y^{(} n\right)+\cdots a_{0}(x) y=f(x)
$$

where each of the derivatives of y and y itself appear linearly, each with a coefficient $a_{i}(x)$. These coefficients can be functions, but we usually deal with the constant coefficient case.

Problem 3 (True/False). The equation $y^{\prime}-\cos (x) y=5$ is a linear, first-order equation.
Solution. True. Even though it may be tempting to say this is non-linear since $\cos (x)$ is clearly not a linear function, $\cos (x)$ is only a coefficient and doesn't determine linearity. This is indeed linear because y^{\prime} and y appear linearly (both appear to the first power).

Problem 4 (4.2\#19). Solve the given initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+y=0 ; \quad y(0)=1, \quad y^{\prime}(0)=-3
$$

Solution. We use the auxiliary equation: $r^{2}+2 r+1=0$. We factor this, getting $r^{2}+2 r+1=(r+1)^{2}=0$, which shows as that -1 is a double root of the equation. This means that our two linearly independent solutions will be e^{-t} and $t e^{-t}$. Thus, we look for a solution of the form $y(t)=c_{1} e^{-t}+c_{2} t e^{-t}$.

Now, we want to satisfy the two initial conditions. We first notice that $y^{\prime}(t)=-c_{1} e^{-t}+c_{2}\left(e^{-t}-t e-t\right)$. Then, we have that

$$
\begin{aligned}
1 & =y(0)=c_{1} e^{0}+c_{2}(0) e^{0}=c_{1} \\
-3 & =y^{\prime}(0)=-c_{1} e^{0}+c_{2}\left(e^{0}-0 e^{0}\right)=-c_{1}+c_{2}
\end{aligned}
$$

This has the solution $c_{1}=1$ and $c_{2}=-2$. Thus, we have that $y(t)=e^{-t}-2 t e^{-t}$.

Problem 5 (4.2 \#35a-b). Determine if the following functions are linearly dependent on $(-\infty, \infty)$:
(a) $y_{1}(t)=1, y_{2}(t)=t, y_{3}(t)=t^{2}$
(b) $y_{1}(t)=-3, y_{2}(t)=5 \sin ^{2} t, y_{3}(t)=\cos ^{2} t$

Solution. (a) We assume that $c_{1} y_{1}(t)+c_{2} y_{2}(t)+c_{3} y_{3}(t)=0$. This gives us $c_{1}+c_{2} t+c_{3} t^{2}=0$. However, we know that a polynomial is only equal to 0 if each of its coefficients equals 0 , meaning that $c_{1}=c_{2}=c_{3}=0$. Thus, the three given functions are linearly independent.
(b) This one is a little trickier. It might be hard to figure out how these fuctions might relate, but there is a trig-identity that will really help us: $\sin ^{2} t+\cos ^{2} t=1$. Thus, we can rewrite our functions as $y_{1}(t)=-3, y_{2}(t)=5 \sin ^{2} t$, and $y_{3}(t)=1-\sin ^{2} t$. Then, we assume that $c_{1} y_{1}(t)+c_{2} y_{2}(t)+c_{3} y_{3}(t)=0$. This gives us:

$$
0=-3 c_{1}+5 c_{2} \sin ^{2} t+c_{3}\left(1-\sin ^{2} t\right)=\left(-3 c_{1}+c_{3}\right)+\left(5 c_{2}-c_{3}\right) \sin ^{2} t
$$

This holds true as long as $-3 c_{1}+c_{3}=0$ and $5 c_{2}-c_{3}=0$. This is a homogeneous system of two equations in three unkowns, so it must have a nontrivial solution (as there can't be a pivot in each column). One such solution is $c_{2}=3, c_{3}=15$ and $c_{1}=5$. Since there is a nontrivial solution, the three given functions are linearly dependent.

Problem 6 (4.3 \#22). Solve the given initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+17 y=0 ; \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Solution. We use the auxiliary equation: $r^{2}+2 r+17=0$. We use the quadratic formula to find the roots:

$$
r=\frac{-2 \pm \sqrt{4-4(17)}}{2}=\frac{-2 \pm \sqrt{-64}}{2}=\frac{-2 \pm 8 i}{2}=-1 \pm 4 i
$$

Thus, using $\alpha=-1$ and $\beta=4$, we know that our two linearly independent solutions will be $e^{-t} \cos (4 t)$ and $e^{-t} \sin (4 t)$. Thus, we look for a solution of the form $y(t)=c_{1} e^{-t} \cos (4 t)+c_{2} e^{-t} \sin (4 t)$.

Now, we want to satisfy the two initial conditions. We first notice that

$$
\begin{aligned}
y^{\prime}(t) & =c_{1}\left(-e^{-t} \cos (4 t)-4 e^{-t} \sin (4 t)\right)+c_{2}\left(-e^{-t} \sin (4 t)+4 e^{-t} \cos (4 t)\right) \\
& =\left(-c_{1}+4 c_{2}\right) e^{-t} \cos (4 t)+\left(-4 c_{1}-c_{2}\right) e^{-t} \sin (4 t)
\end{aligned}
$$

Then, we have that

$$
\begin{aligned}
1 & =y(0)=c_{1} e^{0} \cos (0)+c_{2} e^{0} \sin (0)=c_{1} \\
-1 & =y^{\prime}(0)=\left(-c_{1}+4 c_{2}\right) e^{0} \cos (0)+\left(-4 c_{1}-c_{2}\right) e^{0} \sin (0)=-c_{1}+4 c_{2}
\end{aligned}
$$

This has the solution $c_{1}=1$ and $c_{2}=0$. Thus, we have that $y(t)=e^{-t} \cos (4 t)$.

Problem 7 (4.3 \#29a). Find a general solution to the following higher-order equation:

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}+3 y=0
$$

Solution. The approach of the auxiliary equation extends to this. The third derivative will lead to an r^{3} term, so we have that $r^{3}-r^{2}+r+3=0$. We can guess some roots using the rational roots theorem, and we see that -1 is a root. Thus, we factor out $r+1$, getting that

$$
r^{3}-r^{2}+r+3=(r+1)\left(r^{2}-2 r+3\right)
$$

We use the quadratic formula to factor the quadratic part, getting that

$$
r=\frac{2 \pm \sqrt{4-4(3)}}{2}=\frac{2 \pm \sqrt{-8}}{2}=\frac{2 \pm 2 \sqrt{2} i}{2}=1 \pm \sqrt{2} i
$$

which gives us a complex root with $\alpha=1$ and $\beta=\sqrt{2}$ (and its complex conjugate). Thus, we know that our three linearly independent solutions will be $e^{-t}, e^{t} \cos (\sqrt{2} t)$, and $e^{t} \sin (\sqrt{2} t)$, where we. Thus, a general solution has the form

$$
y(t)=c_{1} e^{-t}+c_{2} e^{t} \cos (\sqrt{2} t)+c_{3} e^{t} \sin (\sqrt{2} t)
$$

