Math 54: Worksheet \#21, Solutions

Name: \qquad Date: November 18, 2021
Fall 2021

Problem 1 (4.4 \#20). Find a particular solution to the following differential equation:

$$
y^{\prime \prime}+4 y=16 t \sin 2 t
$$

Solution. First, we want to figure out what the roots of our auxiliary polynomial for the homogeneous equation are. The polynomial is $r^{2}+4$, and solving $r^{2}+4=0$, we get that $r= \pm 2 i$.

Now, the right hand side $16 t \sin 2 t$ has the form $C t^{m} e^{a t} \sin (b t)$ where $C=16, m=1, a=0$ and $b=2$. Since $a+b i=0+2 i$ is a single root of our auxiliary polynomial, we have to include an extra factor of t in our form of the particular solution:

$$
\begin{aligned}
y_{p}(t)= & t\left(A_{1} t+A_{0}\right) \cos 2 t+t\left(B_{1} t+B_{0}\right) \sin 2 t=\left(A_{1} t^{2}+A_{0} t\right) \cos 2 t+\left(B_{1} t^{2}+B_{0} t\right) \sin 2 t \\
y_{p}^{\prime}(t)= & \left(2 A_{1} t+A_{0}\right) \cos 2 t-2\left(A_{1} t^{2}+A_{0} t\right) \sin 2 t+\left(2 B_{1} t+B_{0}\right) \sin 2 t+2\left(B_{1} t^{2}+B_{0} t\right) \cos 2 t \\
= & \left(2 A_{1} t+A_{0}+2 B_{1} t^{2}+2 B_{0} t\right) \cos 2 t+\left(2 B_{1} t+B_{0}-2 A_{1} t^{2}-2 A_{0} t\right) \sin 2 t \\
y_{p}^{\prime \prime}(t)= & \left(2 A_{1}+4 B_{1} t+2 B_{0}\right) \cos 2 t-2\left(2 A_{1} t+A_{0}+2 B_{1} t^{2}+2 B_{0} t\right) \sin 2 t \\
& \quad+\left(2 B_{1}-4 A_{1} t-2 A_{0}\right) \sin 2 t+2\left(2 B_{1} t+B_{0}-2 A_{1} t^{2}-2 A_{0} t\right) \cos 2 t \\
= & \left(-4 A_{1} t^{2}+\left(8 B_{1}-4 A_{0}\right) t+\left(2 A_{1}+4 B_{0}\right)\right) \cos 2 t+\left(-4 B_{1} t^{2}+\left(-4 B_{0}-8 A_{1}\right) t+\left(2 B_{1}-4 A_{0}\right)\right) \sin 2 t
\end{aligned}
$$

We plug in y_{p} and $y_{p}^{\prime \prime}$ into our equation:

$$
\begin{aligned}
& 16 t \sin 2 t=y_{p}^{\prime \prime}+4 y \\
& \qquad \begin{array}{l}
=\left(-4 A_{1} t^{2}+\left(8 B_{1}-4 A_{0}\right) t+\left(2 A_{1}+4 B_{0}\right)\right) \cos 2 t+\left(-4 B_{1} t^{2}+\left(-4 B_{0}-8 A_{1}\right) t+\left(2 B_{1}-4 A_{0}\right)\right) \sin 2 t \\
\quad \quad+4\left[\left(A_{1} t^{2}+A_{0} t\right) \cos 2 t+\left(B_{1} t^{2}+B_{0} t\right) \sin 2 t\right] \\
\\
=\left(8 B_{1} t+\left(2 A_{1}+4 B_{0}\right)\right) \cos 2 t+\left(\left(-8 A_{1}\right) t+\left(2 B_{1}-4 A_{0}\right)\right) \sin 2 t .
\end{array}
\end{aligned}
$$

Matching the two sides, we get the following four equations: $8 B_{1}=0,2 A_{1}+4 B_{0}=0,-8 A_{1}=16$ and $2 B_{1}-4 A_{0}=0$.

The first equation gives $B_{1}=0$. We can then use the last equation to get $A_{0}=0$. The middle two equations can be solved to find that $A_{1}=-2$ and $B_{0}=1$. This gives us the particular solution

$$
y_{p}(t)=-2 t^{2} \cos 2 t+t \sin 2 t
$$

Problem $2(4.4 \# 28)$. Determine the form of a particular solution to the following differential equation:

$$
y^{\prime \prime}-6 y^{\prime}+9 y=5 t^{6} e^{3 t}
$$

Solution. First, we want to figure out what the roots of our auxiliary polynomial for the homogeneous equation are. The polynomial is $r^{2}-6 r+9=(r-3)^{2}$, so we see that $r=3$ is a root with multiplicity 2 .

Now, the right hand side $5 t^{6} e^{3 t}$ has the form $C t^{m} e^{r t}$ where $C=5, m=6$, and $r=3$. Since $r=3$ is a double root of our auxiliary polynomial, we have to include two extra factors of t in our form of the particular solution:

$$
\begin{aligned}
y_{p}(t) & =t^{2}\left(A_{6} t^{6}+A_{5} t^{5}+A_{4} t^{4}+A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right) e^{3 t} \\
& =\left(A_{6} t^{8}+A_{5} t^{7}+A_{4} t^{6}+A_{3} t^{5}+A_{2} t^{4}+A_{1} t^{3}+A_{0} t^{2}\right) e^{3 t}
\end{aligned}
$$

Problem 3 (True/False). If y_{p} is a particular solution to $y^{\prime \prime}+4 y^{\prime}+2 y=f(t)$ and $c_{1} y_{1}+c_{2} y_{2}$ is the form of the general solution to the homogeneous equaiton $y^{\prime \prime}+4 y^{\prime}+2 y=0$, then every solution of the equation $y^{\prime \prime}+4 y^{\prime}+2 y=f(t)$ has the form $y_{p}+c_{1} y_{1}+c_{2} y_{2}$ for some constants c_{1} and c_{2}.

Solution. True. Let us consider another solution z of the equation $y^{\prime \prime}+4 y^{\prime}+2 y=f(t)$. Then, by the superposition principle, $z-y_{p}$ has to be a solution to the equation $y^{\prime \prime}+4 y^{\prime}+2 y=f(t)-f(t)=0$, the homogeneous version of the equation. Since $c_{1} y_{1}+c_{2} y_{2}$ is the general form of the solution to this equation, there are constants c_{1} and c_{2} such that $z-y_{p}=c_{1} y_{1}+c_{2} y_{2}$. This shows that $z=y_{p}+c_{1} y_{1}+c_{2} y_{2}$, so every solution has that form.

Problem $4(4.5 \# 2 b)$. Given that $y_{1}(t)=\frac{1}{4} \sin 2 t$ is a solution to $y^{\prime \prime}+2 y^{\prime}+4 y=\cos 2 t$ and that $y_{2}(t)=t / 4-1 / 8$ is a solution to $y^{\prime \prime}+2 y^{\prime}+4 y=t$, use the superposition principle to find a solution to the following equation:

$$
y^{\prime \prime}+2 y^{\prime}+4 y=2 t-3 \cos 2 t
$$

Solution. The solution with right hand side $2 t-3 \cos 2 t$ has to be $2 y_{2}-3 y_{1}$ by the superposition principle (since y_{1} is the solution with right hand side $\cos 2 t$ and y_{2} is the solution with right hand side t). Thus, the solution of the equation is

$$
2 y_{2}-3 y_{1}=\frac{t}{2}-\frac{1}{4}-\frac{3}{4} \sin 2 t
$$

Problem 5 (4.5 \#25). Find the solution to the following initial value problem:

$$
z^{\prime \prime}+z=2 e^{-x} ; \quad z(0)=0, \quad z^{\prime}(0)=0
$$

Solution. We first want to find a general form of the solution, before using the initial conditions to find a specific solution. To find a general form of the solution, we have to find a particular solution to the inhomogeneous equation and the general form of the solution to the homogeneous equation.

General solution to homogeneous equation: The homogeneous equation is $z^{\prime \prime}+z=0$. This has auxiliary equation $r^{2}+1=0$, which has the roots $r= \pm i$. We can write the complex roots as $a \pm b i$ with $a=0$ and $b=1$, so we know that the general solution of the homogeneous equation is

$$
c_{1} e^{0 x} \cos x+c_{2} e^{0 x} \sin x=c_{1} \cos x+c_{2} \sin x
$$

Particular solution to inhomogeneous equation: The right hand side has the form $C e^{r x}$ for $C=2$ and $r=\overline{-1}$. Since r is not a root of the auxiliary equation, we have a guess for the particular solution of the form $z_{p}(x)=A e^{-x}$. Quickly, we see that $z_{p}^{\prime}(x)=-A e^{-x}$ and $z_{p}^{\prime \prime}(x)=A e^{-x}$. Plugging in to the equation, we have that

$$
2 e^{-x}=z_{p}^{\prime \prime}+z_{p}=A e^{-x}+A e^{-x}=2 A e^{-x}
$$

so we see that $A=1$ does the job. Thus, we have a particular solution $z_{p}=e^{-x}$.
General solution to inhomogeneous equation: Thus, the form of the general solution to the inhomogeneous equation is $z(x)=e^{-x}+c_{1} \cos x+c_{2} \sin x$.

Using initial conditions to find c_{1} and c_{2} : Finally, we use our initial conditions to find the specific solution. We first notice that $z^{\prime}(x)=-e^{-x}-c_{1} \sin x+c_{2} \cos x$. Thus, we get the two equations

$$
\begin{aligned}
& 0=z(0)=e^{-0}+c_{1} \cos 0+c_{2} \sin 0=1+c_{1} \\
& 0=z^{\prime}(0)=-e^{-0}-c_{1} \sin 0+c_{2} \cos 0=-1+c_{2}
\end{aligned}
$$

This gives use that $c_{1}=-1$ and $c_{2}=1$. Thus, we have the solution $z(x)=e^{-x}-\cos x+\sin x$.

Problem 6 (4.5\#35). Determine the form of a particular solution for the following differential equation:

$$
y^{\prime \prime}-4 y^{\prime}+5 y=e^{5 t}+t \sin 3 t-\cos 3 t
$$

Solution. First, we want to figure out what the roots of our auxiliary polynomial for the homogeneous equation are. The polynomial is $r^{2}-4 r+5$, so we find the roots using the quadratic formula:

$$
\frac{4 \pm \sqrt{16-20}}{2}=\frac{4 \pm \sqrt{-4}}{2}=2 \pm i
$$

Now, we consider each part of the right hand side. The first part, $e^{5 t}$, has the form $C e^{r t}$ for $r=5$ and $C=1$. Since r isn't a root of our auxiliary polynomial, we guess a particular solution of the form $A e^{5 t}$.

The second part, $t \sin 3 t$, has the form $C t^{m} e^{a t} \sin b t$ for $C=1, m=1, a=0$ and $b=3$. Since $a+b i=3 i$ is not a root of our auxiliary polynomial, we just guess a particular solution of the form $\left(B_{1} t+B_{0}\right) \cos 3 t+\left(C_{1} t+C_{0}\right) \sin 3 t$.

The third part, $\cos 3 t$, has the form $C t^{m} e^{a t} \cos b t$ for $C=1, m=0, a=0$ and $b=3$. Since $a+b i=3 i$ is not a root of our auxiliary polynomial, we just guess a particular solution of the form $D_{0} \cos 3 t+E_{0} \sin 3 t$.

The form for the second term covers the form for the third term, so we just need the form for the first and second terms:

$$
A e^{5 t}+\left(B_{1} t+B_{0}\right) \cos 3 t+\left(C_{1} t+C_{0}\right) \sin 3 t
$$

