Math 54: Worksheet \#22

Name: \qquad Date: November 23, 2021
Fall 2021

Problem 1 (True/False). Every n-th order linear differential equation can be written as a first order system of linear differential equations (with n variables.)

Problem 2 (True/False). Consider the following nonhomogeneous system of differential equations in normal form: $\underline{x}^{\prime}(t)=A(t) \underline{x}(t)+\underline{f}(t)$. If \underline{x}_{p} is a particular solution of the nonhomogeneous system and $\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\}$ form a fundamental solution set of the homogeneous system, then the general form of the solution to the nonhomogeneous system is

$$
\underline{x}_{p}+c_{1} \underline{x}_{1}+\cdots+c_{n} \underline{x}_{n} .
$$

Problem 3 ($9.1 \# 11$). Express the following system of higher-order differential equations as a matrix system in normal form:

$$
\begin{array}{r}
x^{\prime \prime}+3 x+2 y=0 \\
y^{\prime \prime}-2 x=0
\end{array}
$$

Problem 4 (9.4\#14). Determine whether the given vector functions are linearly dependent or linearly independent on the interval $(-\infty, \infty)$:

$$
\left[\begin{array}{c}
t e^{-t} \\
e^{-t}
\end{array}\right], \quad\left[\begin{array}{l}
e^{-t} \\
e^{-t}
\end{array}\right] .
$$

Problem 5 (9.4 \#24). The following vector functions are solutions to a system $\underline{x}^{\prime}(t)=A \underline{x}(t)$:

$$
\left[\begin{array}{c}
e^{t} \\
e^{t} \\
e^{t}
\end{array}\right], \quad\left[\begin{array}{c}
\sin t \\
\cos t \\
-\sin t
\end{array}\right], \quad\left[\begin{array}{c}
-\cos t \\
\sin t \\
\cos t
\end{array}\right] .
$$

Determine whether they form a fundamental solution set. If they do, find a fundamental matrix for the system and give a general solution.

