Math 54: Worksheet \#23

Name: \qquad Date: November 30, 2021
Fall 2021

Problem 1 (True/False). For an $n \times n$ matrix A, the solution space of $\underline{x}^{\prime}=A \underline{x}$ is n dimensional.

Problem 2 (True/False). If \underline{v} is an eigenvector of an $n \times n$ matrix A with eigenvalue λ, then $\underline{x}=e^{\lambda t} \underline{v}$ is a solution of $\underline{x}^{\prime}=A \underline{x}$.

Problem 3 (9.5 \#14). Find a general solution of the system $\underline{x}^{\prime}=A \underline{x}$, where

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 3 & -1
\end{array}\right] .
$$

Hint: the eigenvalues of A are $-2,-1$, and 3 .

Problem 4 (9.5\#32). Solve the following initial value problem:

$$
\underline{x}^{\prime}=\left[\begin{array}{cc}
6 & -3 \\
2 & 1
\end{array}\right] \underline{x}, \quad \underline{x}(0)=\left[\begin{array}{c}
-10 \\
-6
\end{array}\right] .
$$

Problem $5(9.6 \# 7)$. Find a fundamental matrix for the system $\underline{x}^{\prime}=A \underline{x}$, where

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

Problem 6 (9.6 \#13a-ish). Solve the following initial value problem:

$$
\underline{x}^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \underline{x}, \quad \underline{x}(0)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

