Math 54: Worksheet \#23, Solutions

Name: \qquad Date: November 30, 2021

Fall 2021
Problem 1 (True/False). For an $n \times n$ matrix A, the solution space of $\underline{x}^{\prime}=A \underline{x}$ is n dimensional.
Solution. True. There is a general theory that proves this, but we don't have to know the proof. We just care that the statement is true. When the matrix A has a basis of n eigenvectors $\underline{u}_{1}, \ldots, \underline{u}_{n}$ with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (not necessarily distinct), the basis for the solutions is $\left\{\bar{e}^{\lambda_{1} t} \underline{u}_{1}, \ldots, e^{\lambda_{n} t} \underline{u}_{n}\right\}$. When the matrix A doesn't have a basis of n eigenvectors (so it isn't diagonalizable), the basis isn't as easy to find, but it still exists. One such basis are the columns of the $e^{t A}$, the matrix exponential.

Problem 2 (True/False). If \underline{v} is an eigenvector of an $n \times n$ matrix A with eigenvalue λ, then $\underline{x}=e^{\lambda t} \underline{v}$ is a solution of $\underline{x}^{\prime}=A \underline{x}$.
Solution. True. This is true, and isn't too hard to prove. First, notice that $\underline{x}^{\prime}=\lambda e^{\lambda t} \underline{v}=\lambda \underline{x}$ since \underline{v} is a constant vector. On the other hand, we have that $A \underline{x}=e^{\lambda t}(A \underline{v})=e^{\lambda t}(\lambda \underline{v})=\lambda \underline{x}$ Thus, we have that $\underline{x}^{\prime}=A \underline{x}$.

Problem 3 ($9.5 \# 14)$. Find a general solution of the system $\underline{x}^{\prime}=A \underline{x}$, where

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 3 & -1
\end{array}\right]
$$

Hint: the eigenvalues of A are $-2,-1$, and 3 .
Solution. Since the eigenvalues are distinct, we know that A must be diagonalizable, so we can find a general solution by first finding the eigenvectors of A.
$\lambda_{1}=-2$. We find the null space of $A+2 I$:

$$
\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 3 & 1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 3 & 1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We note that x_{3} is the only free variable, and it is convenient to let $x_{3}=3$. Then, we get that $x_{2}=-1$ from $3 x_{2}+x_{3}=0$. Finally, we get that $x_{1}=1$ from $x_{1}+x_{2}=0$. Thus, the eigenvector is $\underline{u}_{1}=\left[\begin{array}{lll}1 & -1 & 3\end{array}\right]^{T}$.
$\underline{\lambda_{2}}=-1$. We find the null space of $A+I$. I'll spare the calculation and just tell you that the eigenvector is $\underline{u}_{2}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{T}$.
$\underline{\lambda_{3}=3}$. We find the null space of $A-3 I$. I'll spare the calculation and just tell you that the eigenvector is $\underline{u}_{3}=\left[\begin{array}{lll}1 & 4 & 3\end{array}\right]^{T}$.

After finding the eigenvectors, we can write down the general solution as

$$
c_{1} e^{\lambda_{1} t} \underline{u}_{1}+c_{2} e^{\lambda_{2} t} \underline{u}_{2}+c_{3} e^{\lambda_{3} t} \underline{u}_{3}=c_{1} e^{-2 t}\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] .
$$

Problem $4(9.5 \# 32)$. Solve the following initial value problem:

$$
\underline{x}^{\prime}=\left[\begin{array}{cc}
6 & -3 \\
2 & 1
\end{array}\right] \underline{x}, \quad \underline{x}(0)=\left[\begin{array}{c}
-10 \\
-6
\end{array}\right]
$$

Solution. We first want to find a general solution, which will require finding the eigenvalues and eigenvectors of the matrix. We first find the eigenvalues:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
6-\lambda & -3 \\
2 & 1-\lambda
\end{array}\right]\right)=(6-\lambda)(1-\lambda)+6=\lambda^{2}-7 \lambda+12=(\lambda-4)(\lambda-3)
$$

Thus, we see that the eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=4$. Next, we need to find the eigenvectors. I will let you check that the corresponding eigenvectors are $\underline{u}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\underline{u}_{2}=\left[\begin{array}{ll}3 & 2\end{array}\right]^{T}$.

After finding the eigenvectors, we can write down the general solution as

$$
\underline{x}(t)=c_{1} e^{\lambda_{1} t} \underline{u}_{1}+c_{2} e^{\lambda_{2} t} \underline{u}_{2}=c_{1} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

We then utilize the initial condition to find c_{1} and c_{2} :

$$
\left[\begin{array}{c}
-10 \\
-6
\end{array}\right]=\underline{x}(0)=c_{1} e^{0}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{0}\left[\begin{array}{l}
3 \\
2
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
$$

You can solve this equation for c_{1} and c_{2} to find that $c_{1}=2$ and $c_{2}=-4$.
Thus, we get the solution

$$
\underline{x}(t)=2 e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-4 e^{4 t}\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Problem $5(9.6 \# 7)$. Find a fundamental matrix for the system $\underline{x}^{\prime}=A \underline{x}$, where

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

Solution. We want to first find the eigenvalues and eigenvectors of the matrix:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 0 & 1 \\
0 & -\lambda & -1 \\
0 & 1 & -\lambda
\end{array}\right]\right)=-\lambda \operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]\right)=-\lambda\left(\lambda^{2}+1\right)
$$

This has the roots $\lambda_{1}=0, \lambda_{2}=i=\alpha+\beta i$ and $\lambda_{3}=-i=\alpha-\beta i$ (the last two coming from the quadratic factor). Note here that $\alpha=0$ and $\beta=1$.
$\lambda_{1}=0$. We find the null space of A :

$$
\left[\begin{array}{ccc|c}
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We note that x_{1} is free, $x_{2}=0$, and $x_{3}=0$. Thus, the eigenvector is $\underline{u}_{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$.
$\underline{\lambda_{2}}=i$. We find the null space of $A-i I$:

$$
\left[\begin{array}{ccc|c}
-i & 0 & 1 & 0 \\
0 & -i & -1 & 0 \\
0 & 1 & -i & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & i & 0 \\
0 & 1 & -i & 0 \\
0 & 1 & -i & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & i & 0 \\
0 & 1 & -i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We note that x_{3} is free. Letting $x_{3}=1$, we find that $x_{2}=i$ and $x_{1}=-i$. Thus, the eigenvector is $\underline{u}_{2}=\left[\begin{array}{lll}-i & i & 1\end{array}\right]^{T}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}+i\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}=\underline{a}+i \underline{b}$.
$\lambda_{3}=-i$. We can just take the complex conjugate of the eigenvector for $\lambda_{2}=i$, getting that $\underline{u}_{3}=$ $\left[\begin{array}{lll}i & -i & 1\end{array}\right]^{T}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}-i\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}=\underline{a}-i \underline{b}$

After finding the eigenvectors, we can write down the basis of the solutions:

$$
\underline{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \underline{x}_{2}=\cos t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\sin t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\sin t \\
-\sin t \\
\cos t
\end{array}\right], \quad \underline{x}_{3}=\sin t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\cos t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\cos t \\
\cos t \\
\sin t
\end{array}\right]
$$

The fundamental matrix is given by $X=\left[\begin{array}{lll}\underline{x}_{1} & \underline{x}_{2} & \underline{x}_{3}\end{array}\right]$.

Problem 6 (9.6 \#13a-ish). Solve the following initial value problem:

$$
\underline{x}^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \underline{x}, \quad \underline{x}(0)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Solution. We first want to find a general solution, which will require finding the eigenvalues and eigenvectors of the matrix. We first find the eigenvalues:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
-1 & 1-\lambda
\end{array}\right]\right)=(1-\lambda)^{2}+1=\lambda^{2}-2 \lambda+2
$$

This has roots $\lambda_{1}=1+i=\alpha+\beta i$ and $\lambda_{2}=1-i=\alpha-\beta i$, where $\alpha=1$ and $\beta=1$. Next, we need to find the eigenvectors. I will let you check that the corresponding eigenvectors are $\underline{u}_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]+i\left[\begin{array}{c}-1 \\ 0\end{array}\right]=\underline{a}+i \underline{b}$ and $\underline{u}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]-i\left[\begin{array}{c}-1 \\ 0\end{array}\right]=\underline{a}-i \underline{b}$.

After finding the eigenvectors, we can write down the basis for the solutions:

$$
\underline{x}_{1}(t)=e^{t} \cos t\left[\begin{array}{l}
0 \\
1
\end{array}\right]-e^{t} \sin t\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=e^{t}\left[\begin{array}{l}
\sin t \\
\cos t
\end{array}\right], \underline{x}_{2}(t)=e^{t} \sin t\left[\begin{array}{l}
0 \\
1
\end{array}\right]+e^{t} \cos t\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=e^{t}\left[\begin{array}{c}
-\cos t \\
\sin t
\end{array}\right]
$$

Thus, we have the general solution

$$
\underline{x}(t)=c_{1} e^{t}\left[\begin{array}{c}
\sin t \\
\cos t
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{c}
-\cos t \\
\sin t
\end{array}\right]
$$

We then utilize the initial condition to find c_{1} and c_{2} :

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\underline{x}(0)=c_{1} e^{0}\left[\begin{array}{l}
\sin 0 \\
\cos 0
\end{array}\right]+c_{2} e^{0}\left[\begin{array}{c}
-\cos 0 \\
\sin 0
\end{array}\right]=c_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

You can solve this equation for c_{1} and c_{2} to find that $c_{1}=-1$ and $c_{2}=-1$.
Thus, we get the solution

$$
\underline{x}(t)=-e^{t}\left[\begin{array}{c}
\sin t \\
\cos t
\end{array}\right]-e^{t}\left[\begin{array}{c}
-\cos t \\
\sin t
\end{array}\right]
$$

