Math 54: Worksheet \#24, Solutions

Name: \qquad Date: December 2, 2021

Fall 2021
Problem 1 (True/False). The function $f(x)=\sin ^{2} x$ is an odd function.
Solution. False. We want to check if $f(-x)=-f(x)$ to see if the function is odd. Let us figure out what $f(-x)$ is:

$$
f(-x)=\sin ^{2}(-x)=(\sin (-x))^{2}=(-\sin x)^{2}=\sin ^{2} x=f(x)
$$

where we use that $\sin (-x)=-\sin x$ since \sin is an odd function. We see that f isn't odd. Instead, it's actually even!

Problem 2 (True/False). The function $f(x)=x^{2}+\cos x$ is an even function.
Solution. True. We want to check if $f(-x)=f(x)$ to see if the function is even. Let us figure out what $f(-x)$ is:

$$
f(-x)=(-x)^{2}+\cos (-x)=x^{2}+\cos x=f(x)
$$

where we use that $\cos (-x)=\cos x$ since \cos is an even function. Thus, f is even!
Problem 3. Check that:

$$
\int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x= \begin{cases}0 & \text { if } m \neq n \\ L & \text { if } m=n \neq 0 \\ 2 L & \text { if } m=n=0\end{cases}
$$

Solution. The key to checking these is the following trig identity:

$$
\cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right)=\frac{1}{2} \cos \left(\frac{(m-n) \pi x}{L}\right)+\frac{1}{2} \cos \left(\frac{(m+n) \pi x}{L}\right)
$$

This allows us to integrate easily. First, if $m \neq n$, then

$$
\begin{aligned}
\int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x & =\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(m-n) \pi x}{L}\right) d x+\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(m+n) \pi x}{L}\right) d x \\
& =\left.\frac{1}{2} \frac{L}{(m-n) \pi} \sin \left(\frac{(m-n) \pi x}{L}\right)\right|_{-L} ^{L}+\left.\frac{1}{2} \frac{L}{(m+n) \pi} \sin \left(\frac{(m+n) \pi x}{L}\right)\right|_{-L} ^{L} \\
& =\frac{1}{2} \frac{L}{(m-n) \pi}(0-0)+\frac{1}{2} \frac{L}{(m+n) \pi}(0-0)=0,
\end{aligned}
$$

where we use that, for example, $\sin ((m-n) \pi)=0$ since $m-n$ is an integer.
Second if $m=n \neq 0$, then

$$
\begin{aligned}
\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x & =\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n-n) \pi x}{L}\right) d x+\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(n+n) \pi x}{L}\right) d x \\
& =\frac{1}{2} \int_{-L}^{L} 1 d x+\frac{1}{2} \int_{-L}^{L} \cos \left(\frac{2 n \pi x}{L}\right) d x \\
& =\frac{1}{2}(2 L)+\left.\frac{1}{2} \frac{L}{2 n \pi} \sin \left(\frac{2 n \pi x}{L}\right)\right|_{-L} ^{L}=L+\frac{1}{2} \frac{L}{2 n \pi}(0-0)=L
\end{aligned}
$$

I'll let you check the case where $m=n=0$. Hint: you don't need the trig identity for this one.

Problem 4 (10.3 \#12-ish). Compute the Fourier series of

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ x^{2}, & 0<x<\pi\end{cases}
$$

Determine the function that the Fourier series converges to.
Solution. Here, we notice that $L=\pi$. To compute the Fourier series, we want to compute the following:

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \quad n=0,1,2, \ldots \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x, \quad n=1,2, \ldots
\end{aligned}
$$

First, computing a_{0}, we have that

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} x^{2} d x=\left.\frac{x^{3}}{3 \pi}\right|_{0} ^{\pi}=\frac{\pi^{3}}{3 \pi}=\frac{\pi^{2}}{3}
$$

Then, for $n>0$, we have that

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \cos (n x) f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (n x) x^{2} d x=\frac{1}{\pi}\left[\frac{1}{n} \sin (n x) x^{2}\right]_{0}^{\pi}-\frac{1}{\pi} \int_{0}^{\pi} \frac{2}{n} \sin (n x) x d x \\
& =\frac{1}{n \pi}(0-0)+\left[\frac{2}{\pi n^{2}} \cos (n x) x\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{2}{\pi n^{2}} \cos (n x) d x=\frac{2}{\pi n^{2}}\left((-1)^{n} \pi-0\right)-\left[\frac{2}{\pi n^{3}} \sin (n x)\right]_{0}^{\pi} \\
& =\frac{2(-1)^{n}}{n^{2}}-\frac{2}{\pi n^{3}}(0-0)=\frac{2(-1)^{n}}{n^{2}}
\end{aligned}
$$

Also, we have that

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (n x) f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} \sin (n x) x^{2} d x=-\frac{1}{\pi}\left[\frac{1}{n} \cos (n x) x^{2}\right]_{0}^{\pi}+\frac{1}{\pi} \int_{0}^{\pi} \frac{2}{n} \cos (n x) x d x \\
& =-\frac{1}{n \pi}\left((-1)^{n} \pi^{2}-0\right)+\left[\frac{2}{\pi n^{2}} \sin (n x) x\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{2}{\pi n^{2}} \sin (n x) d x \\
& =\frac{(-1)^{n+1} \pi}{n}+\frac{2}{\pi n^{2}}(0-0)+\left[\frac{2}{\pi n^{3}} \cos (n x)\right]_{0}^{\pi}=\frac{(-1)^{n+1} \pi}{n}+\frac{2}{\pi n^{3}}\left((-1)^{n}-1\right)
\end{aligned}
$$

Then, we have that $f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$.
To find the function that the Fourier Series converges to, we note that f is continuous on $(-\pi, \pi)$. Thus, on all the interior points, $F S(f)(x)=\frac{1}{2}\left(\lim _{t \rightarrow x^{+}} f(t)+\lim _{t \rightarrow x^{-}} f(t)\right)=f(x)$. For $x= \pm \pi$, we have $F S(f)(\pm \pi)=\frac{1}{2}\left(\lim _{t \rightarrow-\pi^{+}} f(t)+\lim _{t \rightarrow \pi^{-}} f(t)\right)=\frac{1}{2}\left(0+\pi^{2}\right)=\frac{\pi^{2}}{2}$. Thus, we have that

$$
F S(f)(x)= \begin{cases}\frac{\pi^{2}}{2} & x=-\pi \\ 0 & -\pi<x<0 \\ x^{2} & 0 \leq x<\pi \\ \frac{\pi^{2}}{2} & x=\pi\end{cases}
$$

Problem 5 (10.4\#2). Let $f(x)=\sin 2 x$ for $0<x<\pi$. Determine
(a) the π-periodic extension \tilde{f}.
(b) the odd 2π-periodic extension f_{o}.
(c) the even 2π-periodic extension f_{e}.

Solution. (a) For the π-periodic extension, you just want to copy the function from $0<x<\pi$ onto $-\pi<x<0$. You can do this by just shifting the function left by π, which means using $f(x+\pi)$. Thus, we have that on $-\pi<x<0$,

$$
\tilde{f}(x)=\sin (2(x+\pi))=\sin (2 x+2 \pi)=\sin 2 x .
$$

Hence, $\tilde{f}(x)=\sin 2 x$.
(b) For the odd 2π-periodic extension, we want to let $f_{o}(x)=-f(-x)$ for $-\pi<x<0$:

$$
f_{o}(x)=-\sin (2(-x))=-\sin (-2 x)=\sin 2 x
$$

since \sin is odd. Thus, we have $f_{o}(x)=\sin 2 x$.
(c) For the even 2π-periodic extension, we want to let $f_{e}(x)=f(-x)$ for $-\pi<x<0$:

$$
f_{e}(x)=\sin (2(-x))=-\sin 2 x
$$

since \sin is odd. Thus, we have

$$
f_{e}(x)= \begin{cases}-\sin 2 x, & -\pi<x<0 \\ \sin 2 x, & 0<=x<\pi\end{cases}
$$

Problem 6 (10.4 \#6-ish). Compute the Fourier sine series and the Fourier cosine series for the function

$$
f(x)=\cos x, \quad 0<x<\pi
$$

Solution. Note, $L=\pi$. We first find the Fourier sine series $\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)=\sum_{n=1}^{\infty} b_{n} \sin (n x)$, where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{\pi} \int_{0}^{\pi} \cos x \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi}\left[\frac{1}{2} \sin ((n-1) x)+\frac{1}{2} \sin ((n+1) x)\right] d x
$$

When $n=1$, we have that

$$
b_{1}=\frac{2}{\pi} \int_{0}^{\pi}\left[\frac{1}{2} \sin (0 x)+\frac{1}{2} \sin (2 x)\right] d x=\frac{1}{\pi} \int_{0}^{\pi} \sin 2 x d x=\frac{1}{\pi}\left[-\frac{1}{2} \cos 2 x\right]_{0}^{\pi}=-\frac{1}{2 \pi}(1-1)=0
$$

When $n>1$, we have that

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi}\left[\frac{1}{2} \sin ((n-1) x)+\frac{1}{2} \sin ((n+1) x)\right] d x=\frac{1}{\pi}\left[-\frac{1}{n-1} \cos ((n-1) x)-\frac{1}{n+1} \cos ((n+1) x)\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[-\frac{1}{n-1}\left((-1)^{n-1}-1\right)-\frac{1}{n+1}\left((-1)^{n+1}-1\right)\right]= \begin{cases}0, & n \text { is odd } \\
\frac{1}{\pi}\left[\frac{2}{n-1}+\frac{2}{n+1}\right], & n \text { is even. }\end{cases}
\end{aligned}
$$

This gives us the Fourier sine series, $\sum_{k=1}^{\infty} \frac{1}{\pi}\left[\frac{2}{2 k-1}+\frac{2}{2 k+1}\right] \sin (2 k x)$. Here, we let $n=2 k$ because we only want even indices.

For the Fourier cosine series, we want to find a series of the form $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)$. However, $f(x)=\cos x$ is already of this form, with $a_{1}=1$ and all other $a_{i}=0$. You could also go through the computation and find this.

Problem $7(10.4 \# 18)$. Let $f(x)=x(\pi-x)$. Find the solution to the following heat flow problem

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =5 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0 \\
u(0, t) & =u(\pi, t)=0, \quad t>0 \\
u(x, 0) & =f(x), \quad 0<x<\pi .
\end{aligned}
$$

Solution. We are looking for a solution of the form $u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\beta\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)$. Here, we know that $\beta=5$ and $L=\pi$. Thus, we want a solution of the form $u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-5 n^{2} t} \sin (n x)$. At $t=0$, we have that $u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n x)$, which we want to match to $f(x)=\pi x-x^{2}$. Thus, we want to find a Fourier sine series of f.

Here, we have that

$$
\begin{aligned}
c_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\pi x-x^{2}\right) \sin (n x) d x \\
& =-\frac{2}{\pi}\left[\frac{1}{n}\left(\pi x-x^{2}\right) \cos (n x)\right]_{0}^{\pi}+\frac{2}{\pi n} \int_{0}^{\pi}(\pi-2 x) \cos (n x) d x \\
& =-\frac{2}{\pi n}(0-0)+\frac{2}{\pi n^{2}}[(\pi-2 x) \sin (n x)]_{0}^{\pi}-\frac{2}{\pi n^{2}} \int_{0}^{\pi}(-2) \sin (n x) d x \\
& =\frac{2}{\pi n^{2}}(0-0)-\left.\frac{4}{\pi n^{3}} \cos (n x)\right|_{0} ^{\pi}=-\frac{4}{\pi n^{3}}\left((-1)^{n}-1\right)= \begin{cases}\frac{8}{\pi n^{3}}, & n \text { is odd } \\
0, & n \text { is even. }\end{cases}
\end{aligned}
$$

This gives us the coefficients c_{n}, so we can see that the solution is of the form

$$
u(x, t)=\sum_{k=0}^{\infty} \frac{8}{\pi(2 k+1)^{3}} e^{-5(2 k+1)^{2} t} \sin ((2 k+1) x)
$$

We let $n=2 k+1$ because we only want to include odd indices.

