Instructions:

- Your submission will consist of six files (and nothing else):
- bisection.m
- newton.m
- findbracket.m
- newtonbisection.m
- results1.txt
- results2.txt
- Very Important: Create a single compressed (.zip) folder with these files. Name it LastNameFirstNameProject, e.g. HeinzMichaelProject.zip

In this assignment, we will address two issues with the Bisection method and Newton's method:

- Finding an interval $[a, b]$ for the Bisection method, with $f(a)$ and $f(b)$ having different signs.
- Combining the excellent convergence properties of Newton's method with the guaranteed root-finding (robustness) of the Bisection method.

1a (Bisection): Implement the Bisection Method for Root Finding.

$$
\text { function } p=\text { bisection(f, } a, b, \text { tol) }
$$

- p: approximation to the root
- f: function handle
- a: left endpoint of initial interval
- b: right endpoint of initial interval
- tol: absolute error tolerance for root

In particular, your code should return an error if $f(a)$ and $f(b)$ have the same sign, in which case the intermediate value theorem does not guarantee bisection can successfully find a root.

1b (Newton): Implement Newton's Method for Root Finding

$$
\text { function } p=\text { newton(f, df, } p 0, \text { tol) }
$$

- p: approximation to the root
- f: function handle
- df: function handle of derivative
- p0: initial guess
- tol: absolute error tolerance for root

2. Implement a MATLAB function findbracket with signature
```
function [a, b] = findbracket(f, x0)
```

which finds an interval $[a, b]$ around x_{0} such that $f(a) f(b)<0$ (i.e. $f(a)$ and $f(b)$ have opposite signs) according to the following method:

1. Set $a=b=x_{0}$ and $d x=0.001$
2. Set $a=a-d x$. If $f(a) f(b)<0$, terminate.
3. Set $b=b+d x$. If $f(a) f(b)<0$, terminate.
4. Multiply $d x$ by 2 and repeat from step 2 .
5. Implement a MATLAB function newtonbisection with signature
```
function p = newtonbisection(f, df, a, b, tol)
```

combining Newton's method and the Bisection method according to the following strategy:

1. Start with $p=a$
2. Attempt a Newton step $p=p-\frac{f(p)}{f^{\prime}(p)}$
3. If p is outside of $[a, b]$, set $p=\frac{a+b}{2}$
4. If $f(p) f(b)<0$, set $a=p$, otherwise set $b=p$.
5. Terminate if $|f(p)|<$ tol
6. Repeat from step 2.

This function will be like a combination of newton and bisection.
4. Run your function newtonbisection using $f(x)=\sin (x)-e^{-x}$ on the interval [1.9, 30]:
$f=@(x) \sin (x)-\exp (-x) ;$
$\mathrm{df}=@(\mathrm{x}) \cos (\mathrm{x})+\exp (-\mathrm{x}) ;$
$\mathrm{x}=$ newtonbisection(f, df, $1.9,30,1 \mathrm{e}-8$)

Present the result in a table showing for each iteration the method used (Newton or Bisection), a, b, p, and $f(p)$ (Hint: it is easiest to print this information each iteration inside the function newtonbisection). Save this as results1.txt. You don't need to do anything fancy or write a function to get the requested data, just temporarily print/display some of the results and format them in a text file.
5. Use your combined findbracket and newtonbisection to solve for the roots of $f(x)=$ $\sin (x)-e^{-x}$ with $x_{0}=-3,-2,-1, \ldots, 9,10$:

```
f = @(x) sin(x) - exp(-x);
df = @(x) cos(x) + exp(-x);
for x0 = -3:10
    [a, b] = findbracket(f, x0);
    x = newtonbisection(f, df, a, b, 1e-8);
    [x0, a, b, x]
end
```

Present your results in a table showing x_{0}, a, b, and x. Save this as results2.txt.

