
Lecture 5: Debugging, Iteration, and Recursion

Math 98, Fall 2022

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 1 / 25

Reminders and Agenda

Using the MATLAB debugger
I Breakpoints
I Step and Run
I Review the MATLAB Documentation

Exercise on finding bugs

Debugging and Programming Best Practices
I Sections 2.7-2.8 of

http://www.sfu.ca/∼wcs/ForGrads/ensc180spring2016f.pdf

Iteration vs. Recursion

Exercises

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 2 / 25

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
http://www.sfu.ca/~wcs/ForGrads/ensc180spring2016f.pdf

Demo: Using the MATLAB Debugger

Breakpoints

Step and Run

Review the MATLAB Documentation

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 3 / 25

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html

bisectionbuggy.m

Consider this implementation of bisection

function p = bisectionbuggy(f, a, b, tol)

while 1

p = (a+b)/2;

if p - a < tol

break;

end

if f(b)*f(p) > 0

a = p;

else

b = p;

end

end

end

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 4 / 25

bisectionbuggy.m: Wrong Output

There’s clearly something wrong with this....

>> p = bisectionbuggy(@(x) x, -1, 2, 1e-4)

p =

1.999908447265625

Let’s see if we can smoke out the bug with the debugger.

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 5 / 25

bisectionbuggy.m: The Solution

Solution: Either change f(a)*f(p) > 0 or f(b)*f(p) < 0 or switch a =

p and b = p

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 6 / 25

Incremental Development

When you start writing scripts that are more than a few lines, you might
find yourself spending more and more time debugging. The more code you
write before you start debugging, the harder it is to find the problem.

Incremental development is a way of programming that tries to
minimize the pain of debugging.

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 7 / 25

Incremental Development: Three Steps
The fundamental steps of incremental debugging are:

1 Always start with a working program. If you have an example from a
book or a program you wrote that is similar to what you are working
on, start with that. Otherwise, start with something you know is
correct, like x = 5. Run the program and confirm that you are
running the program you think you are running. This step is
important, because in most environments there are lots of little things
that can trip you up when you start a new project. Get them out of
the way so you can focus on programming.

2 Make one small, testable change at a time. A “testable” change is
one that displays something on the screen (or has some other effect)
that you can check. Ideally, you should know what the correct answer
is, or be able to check it by performing another computation.

3 Run the program and see if the change worked. If so, go back to Step
2. If not, you will have to do some debugging, but if the change you
made was small, it shouldn’t take long to find the problem.

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 8 / 25

Unit Testing

In large software projects, unit testing is the process of testing software
components in isolation before putting them together.

The programs we have seen so far are not big enough to need unit testing,
but the same principle applies when you are working with a new function
or a new language feature for the first time. You should test it in isolation
before you put it into your program.

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 9 / 25

Unit Testing: Example

For example, suppose you know that x is the sine of some angle and you
want to find the angle. You find the MATLAB function asin, and you are
pretty sure it computes the inverse sine function. Pretty sure is not good
enough; you want to be very sure.
Since we know sin(0) = 0, we could try:

>> asin(0)

ans = 0

which is correct. We also know that sin of 90◦ is 1, so if we try asin(1)

we expect the answer 90, right?

>> asin(1)

ans = 1.5708

What’s going on here?

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 10 / 25

Unit Testing: Example (cont.)

Oops. We forgot that the trig functions in MATLAB work in radians, not
degrees. So the correct answer is π

2 , which we can confirm by dividing
through by π:

>> asin(1)/pi

ans = 0.5000

With this kind of unit testing, you are not really checking for errors in
MATLAB, you are checking your understanding. If you make an error
because you are confused about how MATLAB works, it might take a long
time to find, because when you look at the code, it looks right.

The worst bugs aren’t in your code; they are in your head

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 11 / 25

Debugging in Four Acts

Reading: Examine your code, read it back to yourself, and check
that it means what you meant to say.

Running: Experiment by making changes and running different
versions. Often if you display the right thing at the right place in the
program, the problem becomes obvious, but sometimes you have to
spend some time to build scaffolding.

Ruminating: Take some time to think! What kind of error is it:
syntax, runtime, logical? What information can you get from the
error messages, or from the output of the program? What kind of
error could cause the problem you?re seeing? What did you change
last, before the problem appeared?

Retreating: At some point, the best thing to do is back off, undoing
recent changes, until you get back to a program that works, and that
you understand. Then you can starting rebuilding.

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 12 / 25

Iteration: Motivations

Many tasks in life are boring or tedious because they require doing the
same basic actions over and over again – iterating – in slightly different
contexts.

So let’s get the computer to do this!

for loops and while loops.

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 13 / 25

Iteration: for loops and while loops

A statement to repeat a section of code a specified number of times.

for countVariable = 1 : numberOfIterations

% do something here

% this part will run

% (numberOfIterations) times

end

A statement to repeat a section of code until some condition is satisfied.

while [EXPRESSION is true]

% repeat this part until

% (EXPRESSION) is false

% be sure to modify (EXPRESSION) in this loop

end

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 14 / 25

Fixed Point Iteration: Example

Let’s say we’re interested in this fixed iteration

ϕ(x) =
√

1 + x x0 = 3

After 10 iterations.

>> x = 3;

x = sqrt(1+x)

x =

2

.........

x = sqrt(1+x)

x =

1.618064196086926

x = sqrt(1+x)

x =

1.618043323303466

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 15 / 25

Fixed Point Iteration: For Loop

I claim this converges to φ = 1+
√
5

2 ≈ 1.618033988749895. This is the
golden ratio, one of the most famous numbers in mathematics.

I probably should have done the above calculation with a for loop.

>> x = 3;

for k = 1:10

x = sqrt(1+x);

end

x

x =

1.618043323303466

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 16 / 25

Fixed Point Iteration: While Loop

Let’s do this with a while loop until it “converges”, until the computer
can’t tell the difference anymore.

>> x = 3;

while x~= sqrt(1+x)

x = sqrt(1+x)

end

x =

1.618033988749895

>> x == (1+sqrt(5))/2

ans =

logical

1

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 17 / 25

Infinite Loops

Careful with infinite loops!

>> N = 0;

while N > -1

N = N + 1;

end

Put maximum iteration limits and breaks in your loops to guard for this.

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 18 / 25

Factorial as an Iteration

How do we compute the factorial of a number?

n! =

{
1 n == 0

n × (n − 1)! n > 0

A for loop will do nicely.

function nfac = myFactorial(n)

nfac = 1;

for i = 1:n

nfac = nfac * i;

end

end

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 19 / 25

Factorial as a Recursion

How do we compute the factorial of a number?

n! =

{
1 n == 0

n × (n − 1)! n > 0

We can also take advantage of the recursive definition, and define our
function recursively:

function nfac = myFactorial(n)

if n == 0

nfac = 1;

else

nfac = n*myFactorial(n-1);

end

end

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 20 / 25

Exercise: Fibonacci Numbers

Define the Fibonacci numbers as

f (n) =


0 n == 0

1 n == 1

f (n − 1) + f (n − 2) n >= 2

Write a recursive function fiboRec.m to compute f (n), then write a
non-recursive function fiboLin.m (using a for loop) to do the same. The
non-recursive function should compute all numbers f (0), f (1), . . . , f (n).

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 21 / 25

Fibonacci Numbers: Compute Times

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 22 / 25

Fibonacci Numbers: Compute Times

The problem: our recursive definition did lots of unnecessary computation
by not using previously computed values.

>> fiboRec(4)

Computing f(4)

Computing f(2)

Computing f(0)

Computing f(1)

Computing f(3)

Computing f(1)

Computing f(2)

Computing f(0)

Computing f(1)

ans =

3

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 23 / 25

Iteration Exercise: nested sqrt.m

Write a function

function a = nested sqrt(n)

that takes an integer n and returns the nth term in the following sequence:

a1 = 1, a2 =
√

1 + 2, a3 =

√
1 + 2

√
1 + 3, a4 =

√
1 + 2

√
1 + 3

√
1 + 4, ...

Guess the limiting value of the sequence a = limn→∞ an and make a plot
of ln(|an − a|) vs. n. Also plot the line y = 3− (ln 2)n.
What sequence βn would you guess is appropriate for an − a = O(βn)?

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 24 / 25

Recursion Exercise: qsort.m

How do we sort a list of numbers v?
There are many ways, but quickSort offers a simple recursive
implementation.

1 Pick an element x ∈ v to be the pivot element. (say, the first one).

2 Divide the rest of the list in two: those smaller than x and those
larger than x .

3 output = [quickSort(Smaller), x, quickSort(Larger)]

A few questions we need to answer when working out the details:

What are the base cases that we need to handle?

What if some numbers are equal to x?

Implement
function w = qsort(v)

Math 98, Fall 2022 Lecture 5: Debugging, Iteration, and Recursion 25 / 25

